0000000000723126

AUTHOR

M. Shimi

An easy access to fused chromanones via rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins

Abstract Herein we describe a detailed study on the rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins such as diazabicyclic olefins and urea-derived bicyclic olefins. The developed method provides an ideal route to fused chromanone systems in a single synthetic step. Moreover, the scope of this methodology was extended to different oxa/aza-bridged bicyclic urea derivatives.

research product

An easy access to fused chromanones via rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins

Herein we describe a detailed study on the rhodium catalyzed oxidative coupling of salicylaldehydes with heterobicyclic olefins such as diazabicyclic olefins and urea-derived bicyclic olefins. The developed method provides an ideal route to fused chromanone systems in a single synthetic step. Moreover, the scope of this methodology was extended to different oxa/aza-bridged bicyclic urea derivatives. peerReviewed

research product

Rhodium catalyzed oxidative coupling of salicylaldehydes with diazabicyclic olefins: a one pot strategy involving aldehyde C–H cleavage and π-allyl chemistry towards the synthesis of fused ring chromanones

An efficient one pot strategy for the synthesis of cyclopentene fused chromanone derivatives through the direct oxidative coupling of salicylaldehydes with bicyclic olefins in the presence of a rhodium-copper catalyst system is described. This is the first report on the ring opening-ring closing of bicyclic hydrazines via metal catalyzed oxidative coupling reaction.

research product

ChemInform Abstract: Rhodium(III)-Catalyzed Ring-Opening of Strained Olefins Through C-H Activation of O-Acetyl Ketoximes: An Efficient Synthesis of trans-Functionalized Cyclopentenes and Spiro[2.4]heptenes.

An efficient strategy for the stereoselective synthesis of functionalized cyclopentenes and spiro[2.4]heptenes from strained olefins via C–H activation of aryl ketone O-acetyl ketoximes using [RhCl2Cp∗]2 catalyst is described. The results revealed that a wide range of readily accessible aryl and heteroaryl ketoximes are compatible in this method for the ring opening of bicyclic and spirotricyclic olefins.

research product

Rhodium(III)-catalyzed ring-opening of strained olefins through C–H activation of O-acetyl ketoximes: an efficient synthesis of trans-functionalized cyclopentenes and spiro[2.4]heptenes

An efficient strategy for the stereoselective synthesis of functionalized cyclopentenes and spiro[2.4]heptenes from strained olefins via C–H activation of aryl ketone O-acetyl ketoximes using [RhCl2Cp∗]2 catalyst is described. The results revealed that a wide range of readily accessible aryl and heteroaryl ketoximes are compatible in this method for the ring opening of bicyclic and spirotricyclic olefins.

research product

ChemInform Abstract: Rhodium Catalyzed Oxidative Coupling of Salicylaldehydes with Diazabicyclic Olefins: A One-Pot Strategy Involving Aldehyde C-H Cleavage and π-Allyl Chemistry Towards the Synthesis of Fused Ring Chromanones.

The title reaction involves the first example of ring opening and ring closing of bicyclic hydrazines (I) via metal catalyzed oxidative coupling reaction.

research product

ChemInform Abstract: An Easy Access to Fused Chromanones via Rhodium Catalyzed Oxidative Coupling of Salicylaldehydes with Heterobicyclic Olefins.

Diazabicyclic and urea-derived bicyclic olefins react with salicylaldehydes to produce various types of fused chromanone systems of biological interest in a single step (mechanism).

research product

CCDC 952087: Experimental Crystal Structure Determination

Related Article: E. Jijy, Praveen Prakash, M. Shimi, S. Saranya, P. Preethanuj, Petri M. Pihko, Sunil Varughese, K.V. Radhakrishnan|2013|Tetrahedron Lett.|54|7127|doi:10.1016/j.tetlet.2013.10.089

research product

CCDC 1449575: Experimental Crystal Structure Determination

Related Article: Ajesh Vijayan, T.V. Baiju, E. Jijy, Praveen Prakash, M. Shimi, Nayana Joseph, Petri M. Pihko, Sunil Varughese, K.V. Radhakrishnan|2016|Tetrahedron|72|4007|doi:10.1016/j.tet.2016.05.031

research product