0000000000723890

AUTHOR

Lionel Van Maldergem

showing 7 related works from this author

Phenotypic spectrum and genomics of undiagnosed arthrogryposis multiplex congenital

2022

BackgroundArthrogryposis multiplex congenita (AMC) is characterised by congenital joint contractures in two or more body areas. AMC exhibits wide phenotypic and genetic heterogeneity. Our goals were to improve the genetic diagnosis rates of AMC, to evaluate the added value of whole exome sequencing (WES) compared with targeted exome sequencing (TES) and to identify new genes in 315 unrelated undiagnosed AMC families.MethodsSeveral genomic approaches were used including genetic mapping of disease loci in multiplex or consanguineous families, TES then WES. Sanger sequencing was performed to identify or validate variants.ResultsWe achieved disease gene identification in 52.7% of AMC index pati…

musculoskeletal diseasesArtrogriposi múltiple congènitaSettore BIO/18 - GENETICAhuman geneticsneuromuscular diseasesGenomicsBiologyCONTRACTURESCLASSIFICATIONdiseasessymbols.namesakeDiagnòsticGene mappingarthrogryposis multiplex congenitaExome SequencingOF-FUNCTION MUTATIONSGeneticsMedicine and Health SciencesgenomicsHumansGenetics (clinical)Exome sequencingArthrogryposisSanger sequencingGeneticsArthrogryposis multiplex congenitaGenetic heterogeneitySPINAL MUSCULAR-ATROPHYProteinsnervous system malformationsDYSTROPHYDisease gene identificationGENEHuman geneticsPedigreeETIOLOGYPhenotypesymbolsneuromuscularGenèticaTranscription Factors
researchProduct

Disruption of the ATXN1-CIC complex causes a spectrum of neurobehavioral phenotypes in mice and humans

2017

International audience; Gain-of-function mutations in some genes underlie neurodegenerative conditions, whereas loss-of-function mutations in the same genes have distinct phenotypes. This appears to be the case with the protein ataxin 1 (ATXN1), which forms a transcriptional repressor complex with capicua (CIC). Gain of function of the complex leads to neurodegeneration, but ATXN1-CIC is also essential for survival. We set out to understand the functions of the ATXN1-CIC complex in the developing forebrain and found that losing this complex results in hyperactivity, impaired learning and memory, and abnormal maturation and maintenance of upper-layer cortical neurons. We also found that CIC …

Male0301 basic medicineAutism Spectrum DisorderAtaxin 1neuronsautismNerve Tissue Proteinsattention-deficit/hyperactivity disorderAmygdalaArticleMice03 medical and health sciencesTranscriptional repressor complexataxin-1Cerebellum[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineAnimalsHumansAttention deficit hyperactivity disorderInterpersonal Relationssca1 neuropathologybiologysocial-behaviorNeurodegenerationcag repeatNuclear ProteinsNeurodegenerative Diseasesmedicine.diseasePhenotypeRepressor ProteinsPhenotype030104 developmental biologymedicine.anatomical_structureAutism spectrum disorderintellectual disabilitybiology.proteinAutismFemaleNeurosciencetime pcr datarepressor capicua[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

EPHA7 haploinsufficiency is associated with a neurodevelopmental disorder

2021

International audience; Ephrin receptor and their ligands, the ephrins, are widely expressed in the developing brain. They are implicated in several developmental processes that are crucial for brain development. Deletions in genes encoding for members of the Eph/ephrin receptor family were reported in several neurodevelopmental disorders. The ephrin receptor A7 gene (EPHA7) encodes a member of ephrin receptor subfamily of the protein-tyrosine kinase family. EPHA7 plays a role in corticogenesis processes, determines brain size and shape, and is involved in development of the central nervous system. One patient only was reported so far with a de novo deletion encompassing EPHA7 in 6q16.1. We…

MaleMicrocephaly[SDV]Life Sciences [q-bio]6q161 microdeletionInheritance PatternsEPHA7HaploinsufficiencyBiologyspeech and language developmentNeurodevelopmental disorderExome SequencingGeneticsmedicineEphrinHumansGenetic Predisposition to DiseasemicrocephalyGenetics (clinical)Genetic Association StudiesIn Situ Hybridization FluorescenceGeneticsComparative Genomic Hybridization6q16.1 microdeletionErythropoietin-producing hepatocellular (Eph) receptorReceptor EphA7medicine.diseasePenetrancePhenotypeneurodevelopmental disorderPedigree[SDV] Life Sciences [q-bio]PhenotypeNeurodevelopmental Disordersintellectual disabilityEPHA7MutationChromosomes Human Pair 6FemaleHaploinsufficiencyClinical Genetics
researchProduct

Skraban‐Deardorff syndrome: Six new cases of WDR 26 ‐related disease and expansion of the clinical phenotype

2021

International audience; Skraban-Deardorff syndrome (a disease related to variations in the WDR26 gene; OMIM #617616) was first described in a cohort of 15 individuals in 2017. The syndrome comprises intellectual deficiency, severe speech impairment, ataxic gait, seizures, mild hypotonia with feeding difficulties during infancy, and dysmorphic features. Here, we report on six novel heterozygous de novo pathogenic variants in WDR26 in six probands. The patients’ phenotypes were consistent with original publication. One patient displayed marked hypotonia with an abnormal muscle biopsy; this finding warrants further investigation. Gait must be closely monitored, in order to highlight any muscul…

Male0301 basic medicineProbandPediatricsmedicine.medical_specialtyAdolescent[SDV]Life Sciences [q-bio]Developmental DisabilitiesSkraban-Deardorff syndromeDisease030105 genetics & heredityYoung Adult03 medical and health sciencesIntellectual disabilityGeneticsmedicineWDR26HumansAbnormalities MultiplehypotoniaAtaxic GaitChildGenetics (clinical)Adaptor Proteins Signal Transducing[SDV.GEN]Life Sciences [q-bio]/GeneticsMuscle biopsymedicine.diagnostic_testbusiness.industryInfantSyndromemedicine.diseaseGaitHypotonia3. Good health[SDV] Life Sciences [q-bio]Phenotype030104 developmental biologyspeech therapyintellectual disabilityChild PreschoolMutationCohortlanguage development disordersFemalemedicine.symptombusinessClinical Genetics
researchProduct

Biallelic pathogenic variants in the lanosterol synthase gene LSS involved in the cholesterol biosynthesis cause alopecia with intellectual disabilit…

2019

International audience; Purpose Lanosterol synthase (LSS) gene was initially described in families with extensive congenital cataracts. Recently, a study has highlighted LSS associated with hypotrichosis simplex. We expanded the phenotypic spectrum of LSS to a recessive neuroectodermal syndrome formerly named alopecia with mental retardation (APMR) syndrome. It is a rare autosomal recessive condition characterized by hypotrichosis and intellectual disability (ID) or developmental delay (DD), frequently associated with early-onset epilepsy and other dermatological features. Methods Through a multicenter international collaborative study, we identified LSS pathogenic variants in APMR individu…

MaleDevelopmental DisabilitiesIntellectual disabilitycholesterol pathwayWhole Exome Sequencingchemistry.chemical_compoundMissense mutationAge of OnsetChildIntramolecular TransferasesGenetics (clinical)Exome sequencingGeneticsSanger sequencing0303 health sciencesbiologyLanosterol030305 genetics & heredityLSS3. Good healthPedigreeCholesterolPhenotypeintellectual disabilityChild PreschoolAllelic ImbalanceCongenital cataractssymbolsFemaleSqualeneearly-onset epileptic encephalopathy03 medical and health sciencessymbols.namesakeLanosterolCholesterol pathwayExome SequencingmedicineHumans030304 developmental biologyEpilepsyInfantAlopeciaalopeciamedicine.diseaseEarly-onset epileptic encephalopathychemistryMutationbiology.proteinHypotrichosis[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology[SDV.MHEP.DERM]Life Sciences [q-bio]/Human health and pathology/DermatologyLanosterol synthase
researchProduct

Mutations in the Neuronal Vesicular SNARE VAMP2 Affect Synaptic Membrane Fusion and Impair Human Neurodevelopment

2019

VAMP2 encodes the vesicular SNARE protein VAMP2 (also called synaptobrevin-2). Together with its partners syntaxin-1A and synaptosomal-associated protein 25 (SNAP25), VAMP2 mediates fusion of synaptic vesicles to release neurotransmitters. VAMP2 is essential for vesicular exocytosis and activity-dependent neurotransmitter release. Here, we report five heterozygous de novo mutations in VAMP2 in unrelated individuals presenting with a neurodevelopmental disorder characterized by axial hypotonia (which had been present since birth), intellectual disability, and autistic features. In total, we identified two single-amino-acid deletions and three non-synonymous variants affecting conserved resid…

MaleHeterozygoteAdolescentVesicle-Associated Membrane Protein 2neuronal exocytosisynaptopathyautismsynaptobrevinMembrane FusionExocytosisR-SNARE ProteinsProtein DomainsReportIntellectual DisabilityGeneticsHumansAutistic DisorderChildGenetics (clinical)NeuronsNeurotransmitter Agentsneurodevelopmental disordersvesicle fusionBrainautism; epilepsy; movement disorders; neurodevelopmental disorders; neuronal exocytosis; SNARE; synaptobrevin; synaptopathy; VAMP2; vesicle fusionneuronal exocytosisLipidsMagnetic Resonance Imagingneurodevelopmental disorderautism epilepsy movement disorders neurodevelopmental disorders neuronal exocytosis SNARE synaptobrevin synaptopathy VAMP2 vesicle fusion Genetics Genetics (clinical)Phenotypeautism; epilepsy; movement disorders; neurodevelopmental disorders; neuronal exocytosis; SNARE; synaptobrevin; synaptopathy; VAMP2; vesicle fusion; Genetics; Genetics (clinical)VAMP2SNAREChild PreschoolMutationSynapsesMuscle Hypotoniaepilepsymovement disordersFemalesense organsmovement disorder
researchProduct

PDXK mutations cause polyneuropathy responsive to pyridoxal 5′‐phosphate supplementation

2019

OBJECTIVE: To identify disease-causing variants in autosomal recessive axonal polyneuropathy with optic atrophy and provide targeted replacement therapy. METHODS: We performed genome-wide sequencing, homozygosity mapping, and segregation analysis for novel disease-causing gene discovery. We used circular dichroism to show secondary structure changes and isothermal titration calorimetry to investigate the impact of variants on adenosine triphosphate (ATP) binding. Pathogenicity was further supported by enzymatic assays and mass spectroscopy on recombinant protein, patient-derived fibroblasts, plasma, and erythrocytes. Response to supplementation was measured with clinical validated rating sc…

0301 basic medicineMale[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyLOCAL TRANSLATIONMedizinmedicine.disease_causeDISEASEchemistry.chemical_compound0302 clinical medicinepolineuropathyCinètica enzimàticaGene Regulatory NetworksPyridoxal phosphateChildPyridoxal KinaseAdenosine triphosphate (ATP)Research ArticlesAged 80 and overMutationGene Regulatory NetworkPLASMAAutosomal recessive axonal polyneuropathyDisease gene identificationPyridoxal kinase3. Good healthSettore MED/26 - NEUROLOGIANeuropaties perifèriquesTreatment OutcomePolyneuropathieNeurologyChild PreschoolPyridoxal PhosphateRELIABILITYVitamin B ComplexFemaleLife Sciences & BiomedicinePolyneuropathyHumanResearch ArticleAdultAdolescentPDXKClinical NeurologyCHARCOT-MARIE-TOOTHCHARCOT-MARIE-TOOTH CMT NEUROPATHY SCORE LOCAL TRANSLATION DISEASE RELIABILITY; MECHANISMS DISCOVERY FRAMEWORK KINASE PLASMAMECHANISMS03 medical and health sciencesPolyneuropathiesAtrophy[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]KINASEmedicineHumansCMT NEUROPATHY SCOREPDXK mutationsPyridoxalDietary SupplementAgedPeripheral neuropathiesScience & Technology[SCCO.NEUR]Cognitive science/NeuroscienceEnzyme kineticsNeurosciencesFRAMEWORKmedicine.diseaseMolecular biology030104 developmental biologychemistryDISCOVERYDietary SupplementsMutationNeurosciences & NeurologyNeurology (clinical)Adenosine triphosphate030217 neurology & neurosurgeryAnnals of Neurology
researchProduct