0000000000743141

AUTHOR

Francesco Massel

Squeezing of Quantum Noise of Motion in a Micromechanical Resonator

A pair of conjugate observables, such as the quadrature amplitudes of harmonic motion, have fundamental fluctuations which are bound by the Heisenberg uncertainty relation. However, in a squeezed quantum state, fluctuations of a quantity can be reduced below the standard quantum limit, at the cost of increased fluctuations of the conjugate variable. Here we prepare a nearly macroscopic moving body, realized as a micromechanical resonator, in a squeezed quantum state. We obtain squeezing of one quadrature amplitude $1.1 \pm 0.4$ dB below the standard quantum limit, thus achieving a long-standing goal of obtaining motional squeezing in a macroscopic object.

research product

Enhancing Optomechanical Coupling via the Josephson Effect

Cavity optomechanics is showing promise for studying quantum mechanics in large systems. However, smallness of the radiation-pressure coupling is a serious hindrance. Here we show how the charge tuning of the Josephson inductance in a single-Cooper-pair transistor (SCPT) can be exploited to arrange a strong radiation pressure -type coupling $g_0$ between mechanical and microwave resonators. In a certain limit of parameters, such a coupling can also be seen as a qubit-mediated coupling of two resonators. We show that this scheme allows reaching extremely high $g_0$. Contrary to the recent proposals for exploiting the non-linearity of a large radiation pressure coupling, the main non-linearit…

research product

Backaction-evading measurement of entanglement in optomechanics

We propose here a fully backaction-evading scheme for the measurement of the entanglement between two nanomechanical resonators. The system, which consists of two mechanical oscillators, coupled to a single mode of an electromagnetic resonant cavity through a radiation-pressure interaction term, is driven by two pump tones and four detection tones. As previously discussed in the literature, the former induce entanglement between the two mechanical oscillators, while we show here that a specific choice of phase and amplitude of the detection tones allows for direct pairwise reconstruction of the collective quadrature fluctuations of the mechanical oscillators belonging to quantum-mechanics-f…

research product

Cavity optomechanics mediated by a quantum two-level system

Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of photons is a promising platform for investigations of quantum–mechanical properties of motion. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities. Here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiat…

research product

Cross-Kerr nonlinearity: a stability analysis

We analyse the combined effect of the radiation-pressure and cross-Kerr nonlinearity on the stationary solution of the dynamics of a nanomechanical resonator interacting with an electromagnetic cavity. Within this setup, we show how the optical bistability picture induced by the radiation-pressure force is modified by the presence of the cross-Kerr interaction term. More specifically, we show how the optically bistable region, characterising the pure radiation-pressure case, is reduced by the presence of a cross-Kerr coupling term. At the same time, the upper unstable branch is extended by the presence of a moderate cross-Kerr term, while it is reduced for larger values of the cross-Kerr co…

research product

Nonlinear quantum Langevin equations for bosonic modes in solid-state systems

Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented by the description of the system/environment coupling in terms of coupling to two separate reservoirs, modelling the interaction with external bosonic modes and two level systems, respectively. Furthermore, we show how this model represents a specific example of a class of open quantum systems that can be described by nonlinear quantum Langevin equations. Our analysi…

research product

Mechanical entanglement detection in an optomechanical system

We propose here a setup to generate and evaluate the entanglement between two mechanical resonators in a cavity optomechanical setting. As in previous proposals, our scheme includes two driving pumps allowing for the generation of two-mode mechanical squeezing. In addition, we include here four additional probing tones, which allow for the separate evaluation of the collective mechanical quadratures required to estimate the Duan quantity, thus allowing us to infer whether the mechanical resonators are entangled.

research product

Noiseless Quantum Measurement and Squeezing of Microwave Fields Utilizing Mechanical Vibrations

A process which strongly amplifies both quadrature amplitudes of an oscillatory signal necessarily adds noise. Alternatively, if the information in one quadrature is lost in phase-sensitive amplification, it is possible to completely reconstruct the other quadrature. Here we demonstrate such a nearly perfect phase-sensitive measurement using a cavity optomechanical scheme, characterized by an extremely small noise less than 0.2 quanta. We also observe microwave radiation strongly squeezed by 8 dB below vacuum. A source of bright squeezed microwaves opens up applications in manipulations of quantum systems, and noiseless amplification can be used even at modest cryogenic temperatures.

research product

Theory of phase-mixing amplification in an optomechanical system

The investigation of the ultimate limits imposed by quantum mechanics on amplification represents an important topic both on a fundamental level and from the perspective of potential applications. We discuss here a novel regime for bosonic linear amplifiers—beside phase-insensitive and phase-sensitive amplification—which we term here phase-mixing amplification. Furthermore, we show that phase-mixing amplification can be realised in a cavity optomechanical setup, constituted by a mechanical resonator which is dispersively coupled to an optomechanical cavity asymmetrically driven around both mechanical sidebands. While, in general, this amplifier is phase-mixing, for a suitable choice of para…

research product

Clauser-Horne-Shimony-Holt Bell inequality test in an optomechanical device

We propose here a scheme, based on the measurement of quadrature phase coherence, aimed at testing the Clauser-Horne-Shimony-Holt Bell inequality in an optomechanical setting. Our setup is constituted by two optical cavities dispersively coupled to a common mechanical resonator. We show that it is possible to generate EPR-like correlations between the quadratures of the output fields of the two cavities, and, depending on the system parameters, to observe the violation of the Clauser-Horne-Shimony-Holt inequality.

research product

Low-Noise Amplification and Frequency Conversion with a Multiport Microwave Optomechanical Device

High-gain amplifiers of electromagnetic signals operating near the quantum limit are crucial for quantum information systems and ultrasensitive quantum measurements. However, the existing techniques have a limited gain-bandwidth product and only operate with weak input signals. Here we demonstrate a two-port optomechanical scheme for amplification and routing of microwave signals, a system that simultaneously performs high-gain amplification and frequency conversion in the quantum regime. Our amplifier, implemented in a two-cavity microwave optomechanical device, shows 41 dB of gain and has a high dynamic range, handling input signals up to $10^{13}$ photons per second, three orders of magn…

research product

Cross-Kerr nonlinearity in optomechanical systems

We consider the response of a nanomechanical resonator interacting with an electromagnetic cavity via a radiation pressure coupling and a cross-Kerr coupling. Using a mean field approach we solve the dynamics of the system, and show the different corrections coming from the radiation pressure and the cross-Kerr effect to the usually considered linearized dynamics.

research product

Revealing Hidden Quantum Correlations in an Electromechanical Measurement.

Under a strong quantum measurement, the motion of an oscillator is disturbed by the measurement back-action, as required by the Heisenberg uncertainty principle. When a mechanical oscillator is continuously monitored via an electromagnetic cavity, as in a cavity optomechanical measurement, the back-action is manifest by the shot noise of incoming photons that becomes imprinted onto the motion of the oscillator. Following the photons leaving the cavity, the correlations appear as squeezing of quantum noise in the emitted field. Here we observe such "ponderomotive" squeezing in the microwave domain using an electromechanical device made out of a superconducting resonator and a drumhead mechan…

research product

Tunable phonon-cavity coupling in graphene membranes

A major achievement of the past decade has been the realization of macroscopic quantum systems by exploiting the interactions between optical cavities and mechanical resonators. In these systems, phonons are coherently annihilated or created in exchange for photons. Similar phenomena have recently been observed through phonon-cavity coupling - energy exchange between the modes of a single system mediated by intrinsic material nonlinearity. This has so far been demonstrated primarily for bulk crystalline, high-quality-factor (Q > 105) mechanical systems operated at cryogenic temperatures. Here, we propose graphene as an ideal candidate for the study of such nonlinear mechanics. The large …

research product

Mechanical Detection of the De Haas–van Alphen Effect in Graphene

Funding Information: We thank V. Falko, M. Kumar, and S. Paraoanu for useful discussions. This work was supported by the Academy of Finland projects 314448 (BOLOSE) and 336813 (CoE, Quantum Technology Finland) as well as by ERC (grant no. 670743). The research leading to these results has received funding from the European Unions Horizon 2020 Research and Innovation Programme, under Grant Agreement no 824109, and the experimental work benefited from the Aalto University OtaNano/LTL infrastructure. A.L. is grateful to Osk. Huttunen foundation for a scholarship. J.M. thanks the Väisälä Foundation of the Finnish Academy of Science and Letters for support. F.M. acknowledges financial support fr…

research product

Driven Bose-Hubbard Model with a Parametrically Modulated Harmonic Trap

We investigate a one-dimensional Bose–Hubbard model in a parametrically driven global harmonic trap. The delicate interplay of both the local interaction of the atoms in the lattice and the driving of the global trap allows us to control the dynamical stability of the trapped quantum many-body state. The impact of the atomic interaction on the dynamical stability of the driven quantum many-body state is revealed in the regime of weak interaction by analyzing a discretized Gross–Pitaevskii equation within a Gaussian variational ansatz, yielding a Mathieu equation for the condensate width. The parametric resonance condition is shown to be modified by the atom interaction strength. In particul…

research product