0000000000751791

AUTHOR

Hassan A. Khalil

Functional Adhesion of Pectin Biopolymers to the Lung Visceral Pleura

Pleural injuries and the associated “air leak” are the most common complications after pulmonary surgery. Air leaks are the primary reason for prolonged chest tube use and increased hospital length of stay. Pectin, a plant-derived heteropolysaccharide, has been shown to be an air-tight sealant of pulmonary air leaks. Here, we investigate the morphologic and mechanical properties of pectin adhesion to the visceral pleural surface of the lung. After the application of high-methoxyl citrus pectin films to the murine lung, we used scanning electron microscopy to demonstrate intimate binding to the lung surface. To quantitatively assess pectin adhesion to the pleural surface, we used a custom ad…

research product

Biomaterial-Assisted Anastomotic Healing: Serosal Adhesion of Pectin Films

Anastomotic leakage is a frequent complication of intestinal surgery and a major source of surgical morbidity. The timing of anastomotic failures suggests that leaks are the result of inadequate mechanical support during the vulnerable phase of wound healing. To identify a biomaterial with physical and mechanical properties appropriate for assisted anastomotic healing, we studied the adhesive properties of the plant-derived structural heteropolysaccharide called pectin. Specifically, we examined high methoxyl citrus pectin films at water contents between 17–24% for their adhesivity to ex vivo porcine small bowel serosa. In assays of tensile adhesion strength, pectin demonstrated significant…

research product