0000000000767703
AUTHOR
Maria Pia Bussa
The NUMEN project @ LNS : Status and perspectives
The aim of the NUMEN project is to access the Nuclear Matrix Elements (NME), involved in the half life of the neutrinoless double beta decay (0νββ), by measuring the cross sections of Heavy Ions (HI) induced Double Charge Exchange (DCE) reactions with high accuracy. First evidence of the possibility to get quantitative information about NME from experiments is shown in the reaction 40Ca(18O,18Ne)40Ar at 270 MeV, performed with MAGNEX spectrometer using Superconducting Cyclotron (CS) beams at INFN - Laboratory Nazionali del Sud (LNS) in Catania. Preliminary tests on 116Sn and 116Cd target are already performed. High beam intensity is the new frontiers for these studies. peerReviewed
The Polarised Valence Quark Distribution from semi-inclusive DIS
The semi-inclusive difference asymmetry A^{h^{+}-h^{-}} for hadrons of opposite charge has been measured by the COMPASS experiment at CERN. The data were collected in the years 2002-2004 using a 160 GeV polarised muon beam scattered off a large polarised ^6LiD target and cover the range 0.006 < x < 0.7 and 1 < Q^2 < 100 (GeV/c)^2. In leading order QCD (LO) the asymmetry A_d^{h^{+}-h^{-}} measures the valence quark polarisation and provides an evaluation of the first moment of Delta u_v + Delta d_v which is found to be equal to 0.40 +- 0.07 (stat.) +- 0.05 (syst.) over the measured range of x at Q^2 = 10 (GeV/c)^2. When combined with the first moment of g_1^d previously measured …
Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay
Neutrinoless double beta decay (0v\b{eta}\b{eta}) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research "beyond Standard Model" and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0v\b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extr…
Gluon Polarisation in the Nucleon and Longitudinal Double Spin Asymmetries from Open Charm Muoproduction
The gluon polarisation in the nucleon has been determined by detecting charm production via D0 meson decay to charged K and pi in polarised muon scattering off a longitudinally polarised deuteron target. The data were taken by the COMPASS Collaboration at CERN between 2002 and 2006 and corresponds to an integrated luminosity of 2.8 fb^-1. The dominant underlying process of charm production is the photon-gluon fusion to a cc-bar pair. A leading order QCD approach gives an average gluon polarisation of (Delta g/g)_x= -0.49 +- 0.27(stat) +- 0.11(syst) at a scale mu^2 ~ 13 (GeV/c)^2 and at an average gluon momentum fraction (x) ~ 0.11. The longitudinal cross-section asymmetry for D0 production …
NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay
Neutrinoless double beta decay (0{\nu}\b{eta}\b{eta}) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their own anti-particles. Presently, this physics case is one of the most important research beyond Standard Model and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the \b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. The 0{\nu}\b{eta}\b{eta} decay rate can be expressed as a product of independent factors: the phase-space factors, the nuclear matrix elemen…