0000000000794230

AUTHOR

Elena Diana Giol

0000-0003-1889-9416

Endothelialization and Anticoagulation Potential of Surface-Modified PET Intended for Vascular Applications.

In vascular tissue engineering, great attention is paid to the immobilization of biomolecules onto synthetic grafts to increase bio- and hemocompatibility-two critical milestones in the field. The surface modification field of poly(ethylene terephthalate) (PET), a well-known vascular-graft material, is matured and oversaturated. Nevertheless, most developed methods are laborious multistep procedures generally accompanied by coating instability or toxicity issues. Herein, a straightforward surface modification procedure is presented engineered to simultaneously promote surface endothelialization and anticoagulation properties via the covalent immobilization of gelatin through a photoactivate…

research product

Biomimetic strategy towards gelatin coatings on PET. Effect of protocol on coating stability and cell-interactive properties

Gelatin-modified poly(ethylene terephthalate) (PET) surfaces have been previously realized via an intermediate dopamine coating procedure that resulted in surfaces with superior haemocompatibility compared to unfunctionalized PET. The present study addresses the biocompatibility assessment of these coated PET surfaces. In this context, the stability of the gelatin coating upon exposure to physiological conditions and its cell-interactive properties were investigated. The proposed gelatin–dopamine-PET surfaces showed an increased protein coating stability up to 24 days and promoted the attachment and spreading of both endothelial cells (ECs) and smooth muscle cells (SMCs). In parallel, physi…

research product