0000000000849068
AUTHOR
Leonardo Rundo
A Novel Bio-Inspired Approach for High-Performance Management in Service-Oriented Networks
Service-continuity in distributed computing can be enhanced by designing self-organized systems, with a non-fixed structure, able to modify their structure and organization, as well as adaptively react to internal and external environment changes. In this paper, an architecture exploiting a bio-inspired management approach, i.e., the functioning of cell metabolism, for specialized computing environments in Service-Oriented Networks (SONs) is proposed. Similar to the processes acting in metabolic networks, the nodes communicate to each other by means of stimulation or suppression chains giving rise to emergent behaviors to defend against foreign invaders, attacks, and malfunctioning. The mai…
A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning
The aim of this study is to combine Biological Target Volume (BTV) segmentation and Gross Target Volume (GTV) segmentation in stereotactic neurosurgery.Our goal is to enhance Clinical Target Volume (CTV) definition, including metabolic and morphologic information, for treatment planning and patient follow-up.We propose a fully automatic approach for multimodal PET and MR image segmentation. This method is based on the Random Walker (RW) and Fuzzy C-Means clustering (FCM) algorithms. A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is presented, considering volume…
Computer-Assisted Approaches for Uterine Fibroid Segmentation in MRgFUS Treatments: Quantitative Evaluation and Clinical Feasibility Analysis
Nowadays, uterine fibroids can be treated using Magnetic Resonance guided Focused Ultrasound Surgery (MRgFUS), which is a non-invasive therapy exploiting thermal ablation. In order to measure the Non-Perfused Volume (NPV) for treatment response assessment, the ablated fibroid areas (i.e., Region of Treatment, ROT) are manually contoured by a radiologist. The current operator-dependent methodology could affect the subsequent follow-up phases, due to the lack of result repeatability. In addition, this fully manual procedure is time-consuming, considerably increasing execution times. These critical issues can be addressed only by means of accurate and efficient automated Pattern Recognition ap…
Combining split-and-merge and multi-seed region growing algorithms for uterine fibroid segmentation in MRgFUS treatments
Uterine fibroids are benign tumors that can affect female patients during reproductive years. Magnetic resonance-guided focused ultrasound (MRgFUS) represents a noninvasive approach that uses thermal ablation principles to treat symptomatic fibroids. During traditional treatment planning, uterus, fibroids, and surrounding organs at risk must be manually marked on MR images by an operator. After treatment, an operator must segment, again manually, treated areas to evaluate the non-perfused volume (NPV) inside the fibroids. Both pre- and post-treatment procedures are time-consuming and operator-dependent. This paper presents a novel method, based on an advanced direct region detection model, …
Clinical support in radiation therapy scenarios: MR brain tumor segmentation using an unsupervised fuzzy C-Means clustering technique
On Unsupervised Methods for Medical Image Segmentation: Investigating Classic Approaches in Breast Cancer DCE-MRI
Unsupervised segmentation techniques, which do not require labeled data for training and can be more easily integrated into the clinical routine, represent a valid solution especially from a clinical feasibility perspective. Indeed, large-scale annotated datasets are not always available, undermining their immediate implementation and use in the clinic. Breast cancer is the most common cause of cancer death in women worldwide. In this study, breast lesion delineation in Dynamic Contrast Enhanced MRI (DCE-MRI) series was addressed by means of four popular unsupervised segmentation approaches: Split-and-Merge combined with Region Growing (SMRG), k-means, Fuzzy C-Means (FCM), and spatial FCM (…
HCI for biomedical decision-making: From diagnosis to therapy.
Abstract Human-Computer Interaction (HCI) plays a fundamental role in the design of software oriented towards clinical decision-making tasks. Currently, physicians have to deal with an ensemble of systems and software tools in the clinical environment, such as clinical Decision Support Systems (CDSSs), Electronic Health Records (EHRs), Picture Archiving and Communication Systems (PACSs). Moreover, additional platforms aim at collaborative work particularly in telemedicine, where rehabilitation technologies and conversational agents can support the healthcare professionals.
Gamma Knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised Fuzzy C-Means clustering
Nowadays, radiation treatment is beginning to intensively use MRI thanks to its greater ability to discriminate healthy and diseased soft-tissues. Leksell Gamma Knife® is a radio-surgical device, used to treat different brain lesions, which are often inaccessible for conventional surgery, such as benign or malignant tumors. Currently, the target to be treated with radiation therapy is contoured with slice-by-slice manual segmentation on MR datasets. This approach makes the segmentation procedure time consuming and operator-dependent. The repeatability of the tumor boundary delineation may be ensured only by using automatic or semiautomatic methods, supporting clinicians in the treatment pla…
USE-Net: Incorporating Squeeze-and-Excitation blocks into U-Net for prostate zonal segmentation of multi-institutional MRI datasets
Prostate cancer is the most common malignant tumors in men but prostate Magnetic Resonance Imaging (MRI) analysis remains challenging. Besides whole prostate gland segmentation, the capability to differentiate between the blurry boundary of the Central Gland (CG) and Peripheral Zone (PZ) can lead to differential diagnosis, since tumor's frequency and severity differ in these regions. To tackle the prostate zonal segmentation task, we propose a novel Convolutional Neural Network (CNN), called USE-Net, which incorporates Squeeze-and-Excitation (SE) blocks into U-Net. Especially, the SE blocks are added after every Encoder (Enc USE-Net) or Encoder-Decoder block (Enc-Dec USE-Net). This study ev…
Neuro-radiosurgery treatments: MRI brain tumor seeded image segmentation based on a cellular automata model
Gross Tumor Volume (GTV) segmentation on medical images is an open issue in neuro-radiosurgery. Magnetic Resonance Imaging (MRI) is the most promi-nent modality in radiation therapy for soft-tissue anatomical districts. Gamma Knife stereotactic neuro-radiosurgery is a mini-invasive technique used to deal with inaccessible or insufficiently treated tumors. During the planning phase, the GTV is usually contoured by radiation oncologists using a manual segmentation procedure on MR images. This methodology is certainly time-consuming and op-erator-dependent. Delineation result repeatability, in terms of both intra- and inter-operator reliability, is only obtained by using computer-assisted appr…
Using anatomic and metabolic imaging in stereotactic radio neuro-surgery treatments
Automated prostate gland segmentation based on an unsupervised fuzzy C-means clustering technique using multispectral T1w and T2w MR imaging
Prostate imaging analysis is difficult in diagnosis, therapy, and staging of prostate cancer. In clinical practice, Magnetic Resonance Imaging (MRI) is increasingly used thanks to its morphologic and functional capabilities. However, manual detection and delineation of prostate gland on multispectral MRI data is currently a time-expensive and operator-dependent procedure. Efficient computer-assisted segmentation approaches are not yet able to address these issues, but rather have the potential to do so. In this paper, a novel automatic prostate MR image segmentation method based on the Fuzzy C-Means (FCM) clustering algorithm, which enables multispectral T1-weighted (T1w) and T2-weighted (T…
Fingerprint classification based on deep learning approaches: Experimental findings and comparisons
Biometric classification plays a key role in fingerprint characterization, especially in the identification process. In fact, reducing the number of comparisons in biometric recognition systems is essential when dealing with large-scale databases. The classification of fingerprints aims to achieve this target by splitting fingerprints into different categories. The general approach of fingerprint classification requires pre-processing techniques that are usually computationally expensive. Deep Learning is emerging as the leading field that has been successfully applied to many areas, such as image processing. This work shows the performance of pre-trained Convolutional Neural Networks (CNNs…
A framework for data-driven adaptive GUI generation based on DICOM
Computer applications for diagnostic medical imaging provide generally a wide range of tools to support physicians in their daily diagnosis activities. Unfortunately, some functionalities are specialized for specific diseases or imaging modalities, while other ones are useless for the images under investigation. Nevertheless, the corresponding Graphical User Interface (GUI) widgets are still present on the screen reducing the image visualization area. As a consequence, the physician may be affected by cognitive overload and visual stress causing a degradation of performances, mainly due to unuseful widgets. In clinical environments, a GUI must represent a sequence of steps for image investi…
A Survey on Nature-Inspired Medical Image Analysis: A Step Further in Biomedical Data Integration
Natural phenomena and mechanisms have always intrigued humans, inspiring the design of effective solutions for real-world problems. Indeed, fascinating processes occur in nature, giving rise to an ever-increasing scientific interest. In everyday life, the amount of heterogeneous biomedical data is increasing more and more thanks to the advances in image acquisition modalities and high-throughput technologies. The automated analysis of these large-scale datasets creates new compelling challenges for data-driven and model-based computational methods. The application of intelligent algorithms, which mimic natural phenomena, is emerging as an effective paradigm for tackling complex problems, by…
CNN-Based Prostate Zonal Segmentation on T2-Weighted MR Images: A Cross-Dataset Study
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric magnetic resonance imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the central gland (CG) and peripheral zone (PZ) can guide toward differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on deep learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability o…
A multimodal retina-iris biometric system using the Levenshtein distance for spatial feature comparison
Abstract The recent developments of information technologies, and the consequent need for access to distributed services and resources, require robust and reliable authentication systems. Biometric systems can guarantee high levels of security and multimodal techniques, which combine two or more biometric traits, warranting constraints that are more stringent during the access phases. This work proposes a novel multimodal biometric system based on iris and retina combination in the spatial domain. The proposed solution follows the alignment and recognition approach commonly adopted in computational linguistics and bioinformatics; in particular, features are extracted separately for iris and…
CNN-based Prostate Zonal Segmentation on T2-weighted MR Images: A Cross-dataset Study
Prostate cancer is the most common cancer among US men. However, prostate imaging is still challenging despite the advances in multi-parametric Magnetic Resonance Imaging (MRI), which provides both morphologic and functional information pertaining to the pathological regions. Along with whole prostate gland segmentation, distinguishing between the Central Gland (CG) and Peripheral Zone (PZ) can guide towards differential diagnosis, since the frequency and severity of tumors differ in these regions; however, their boundary is often weak and fuzzy. This work presents a preliminary study on Deep Learning to automatically delineate the CG and PZ, aiming at evaluating the generalization ability …
Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering
Abstract Multiparametric Magnetic Resonance Imaging (MRI) is the most sensitive imaging modality for breast cancer detection and is increasingly playing a key role in lesion characterization. In this context, accurate and reliable quantification of the shape and extent of breast cancer is crucial in clinical research environments. Since conventional lesion delineation procedures are still mostly manual, automated segmentation approaches can improve this time-consuming and operator-dependent task by annotating the regions of interest in a reproducible manner. In this work, a semi-automated and interactive approach based on the spatial Fuzzy C-Means (sFCM) algorithm is proposed, used to segme…
A Computational Study on Temperature Variations in MRgFUS Treatments Using PRF Thermometry Techniques and Optical Probes
Structural and metabolic imaging are fundamental for diagnosis, treatment and follow-up in oncology. Beyond the well-established diagnostic imaging applications, ultrasounds are currently emerging in the clinical practice as a noninvasive technology for therapy. Indeed, the sound waves can be used to increase the temperature inside the target solid tumors, leading to apoptosis or necrosis of neoplastic tissues. The Magnetic resonance-guided focused ultrasound surgery (MRgFUS) technology represents a valid application of this ultrasound property, mainly used in oncology and neurology. In this paper
Robustness Analysis of DCE-MRI-Derived Radiomic Features in Breast Masses: Assessing Quantization Levels and Segmentation Agreement
Featured Application The use of highly robust radiomic features is fundamental to reduce intrinsic dependencies and to provide reliable predictive models. This work presents a study on breast tumor DCE-MRI considering the radiomic feature robustness against the quantization settings and segmentation methods. Machine learning models based on radiomic features allow us to obtain biomarkers that are capable of modeling the disease and that are able to support the clinical routine. Recent studies have shown that it is fundamental that the computed features are robust and reproducible. Although several initiatives to standardize the definition and extraction process of biomarkers are ongoing, th…
3D DCE-MRI Radiomic Analysis for Malignant Lesion Prediction in Breast Cancer Patients
Rationale and Objectives: To develop and validate a radiomic model, with radiomic features extracted from breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) from a 1.5T scanner, for predicting the malignancy of masses with enhancement. Images were acquired using an 8-channel breast coil in the axial plane. The rationale behind this study is to show the feasibility of a radio-mics-powered model that could be integrated into the clinical practice by exploiting only standard-of-care DCE-MRI with the goal of reducing the required image pre-processing (ie, normalization and quantitative imaging map generation).Materials and Methods: 107 radiomic features were extracted from a …
A fully automatic 2D segmentation method for uterine fibroid in MRgFUS treatment evaluation
PurposeMagnetic Resonance guided Focused UltraSound (MRgFUS) represents a non-invasive surgical approach that uses thermal ablation to treat uterine fibroids. After the MRgFUS treatment, an operator must manually segment the treated fibroid areas to evaluate the NonPerfused Volume (NPV). This manual approach is operator-dependent, introducing issues of result reproducibility, which could lead to errors in the subsequent follow-up phase. Moreover, manual segmentation is time-consuming, and can have a negative impact on the optimization of both machine-time and operator-time. MethodTo address these issues, in this paper a novel fully automatic method based on the unsupervised Fuzzy C-Means cl…
Semi-automatic Brain Lesion Segmentation in Gamma Knife Treatments Using an Unsupervised Fuzzy C-Means Clustering Technique
MR Imaging is being increasingly used in radiation treatment planning as well as for staging and assessing tumor response. Leksell Gamma Knife (R) is a device for stereotactic neuro-radiosurgery to deal with inaccessible or insufficiently treated lesions with traditional surgery or radiotherapy. The target to be treated with radiation beams is currently contoured through slice-by-slice manual segmentation on MR images. This procedure is time consuming and operator-dependent. Segmentation result repeatability may be ensured only by using automatic/semi-automatic methods with the clinicians supporting the planning phase. In this paper a semi-automatic segmentation method, based on an unsuperv…
Recent advances of HCI in decision-making tasks for optimized clinical workflows and precision medicine.
The ever-increasing amount of biomedical data is enabling new large-scale studies, even though ad hoc computational solutions are required. The most recent Machine Learning (ML) and Artificial Intelligence (AI) techniques have been achieving outstanding performance and an important impact in clinical research, aiming at precision medicine, as well as improving healthcare workflows. However, the inherent heterogeneity and uncertainty in the healthcare information sources pose new compelling challenges for clinicians in their decision-making tasks. Only the proper combination of AI and human intelligence capabilities, by explicitly taking into account effective and safe interaction paradigms,…
Fully automatic multispectral MR image segmentation of prostate gland based on the fuzzy C-means clustering algorithm
Prostate imaging is a very critical issue in the clinical practice, especially for diagnosis, therapy, and staging of prostate cancer. Magnetic Resonance Imaging (MRI) can provide both morphologic and complementary functional information of tumor region. Manual detection and segmentation of prostate gland and carcinoma on multispectral MRI data is not easily practicable in the clinical routine because of the long times required by experienced radiologists to analyze several types of imaging data. In this paper, a fully automatic image segmentation method, exploiting an unsupervised Fuzzy C-Means (FCM) clustering technique for multispectral T1-weighted and T2-weighted MRI data processing, is…
NeXt for neuro-radiosurgery: A fully automatic approach for necrosis extraction in brain tumor MRI using an unsupervised machine learning technique
Stereotactic neuro-radiosurgery is a well-established therapy for intracranial diseases, especially brain metastases and highly invasive cancers that are difficult to treat with conventional surgery or radiotherapy. Nowadays, magnetic resonance imaging (MRI) is the most used modality in radiation therapy for soft-tissue anatomical districts, allowing for an accurate gross tumor volume (GTV) segmentation. Investigating also necrotic material within the whole tumor has significant clinical value in treatment planning and cancer progression assessment. These pathological necrotic regions are generally characterized by hypoxia, which is implicated in several aspects of tumor development and gro…
Energy Efficiency Evaluation of Dynamic Partial Reconfiguration in Field Programmable Gate Arrays: An Experimental Case Study
Both computational performances and energy efficiency are required for the development of any mobile or embedded information processing system. The Internet of Things (IoT) is the latest evolution of these systems, paving the way for advancements in ubiquitous computing. In a context in which a large amount of data is often analyzed and processed, it is mandatory to adapt node logic and processing capabilities with respect to the available energy resources. This paper investigates under which conditions a partially reconfigurable hardware accelerator can provide energy saving in complex processing tasks. The paper also presents a useful analysis of how the dynamic partial reconfiguration te…
GTVcut for neuro-radiosurgery treatment planning: an MRI brain cancer seeded image segmentation method based on a cellular automata model
Despite of the development of advanced segmentation techniques, achieving accurate and reproducible gross tumor volume (GTV) segmentation results is still an important challenge in neuro-radiosurgery. Nowadays, magnetic resonance imaging (MRI) is the most prominent modality in radiation therapy for soft-tissue anatomical districts. Gamma Knife stereotactic neuro-radiosurgery is a minimally invasive technology for dealing with inaccessible or insufficiently treated tumors with traditional surgery or radiotherapy. During a treatment planning phase, the GTV is generally contoured by experienced neurosurgeons and radiation oncologists using fully manual segmentation procedures on MR images. Unf…
CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease
AbstractThis study was aimed to investigate the predictive value of the radiomics features extracted from pericoronaric adipose tissue — around the anterior interventricular artery (IVA) — to assess the condition of coronary arteries compared with the use of clinical characteristics alone (i.e., risk factors). Clinical and radiomic data of 118 patients were retrospectively analyzed. In total, 93 radiomics features were extracted for each ROI around the IVA, and 13 clinical features were used to build different machine learning models finalized to predict the impairment (or otherwise) of coronary arteries. Pericoronaric radiomic features improved prediction above the use of risk factors alon…
An edge-driven 3D region-growing approach for upper airway morphology and volume evaluation in patients with Pierre Robin sequence
Abstract: Pierre Robin sequence (PRS) is a pathological condition responsible for a sequence of clinical events, such as breathing and feeding difficulties, that must be addressed to give the patient at least a chance to survive. By using medical imaging techniques, in a non-intrusive way, the surgeon has the opportunity to obtain 3D views, reconstruction of the regions of interest (ROIs), useful to increase understanding of the PRS patient’s condition. In this paper, a semi-automatic approach for segmentation of the upper airways is proposed. The implemented approach uses an edge-driven 3D region-growing algorithm to segment ROIs and 3D volume-rendering technique to reconstruct the 3D mode…