0000000000860147
AUTHOR
K. Darshana Abeyrathna
The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems
The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…
Novel Tsetlin Machine Mechanisms for Logic-based Regression and Classification with Support for Continuous Input, Clause Weighting, Confidence Assessment, Deterministic Learning, and Convolution
The regression Tsetlin machine: a novel approach to interpretable nonlinear regression
Relying simply on bitwise operators, the recently introduced Tsetlin machine (TM) has provided competitive pattern classification accuracy in several benchmarks, including text understanding. In this paper, we introduce the regression Tsetlin machine (RTM), a new class of TMs designed for continuous input and output, targeting nonlinear regression problems. In all brevity, we convert continuous input into a binary representation based on thresholding, and transform the propositional formula formed by the TM into an aggregated continuous output. Our empirical comparison of the RTM with state-of-the-art regression techniques reveals either superior or on par performance on five datasets. Thi…
A Novel Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning
Due to the high energy consumption and scalability challenges of deep learning, there is a critical need to shift research focus towards dealing with energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly random number generation to stochastically guide a team of Tsetlin Automata to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite-state learning automaton that can replace the Tsetlin Automata in TM learning, for increased d…
A Regression Tsetlin Machine with Integer Weighted Clauses for Compact Pattern Representation
The Regression Tsetlin Machine (RTM) addresses the lack of interpretability impeding state-of-the-art nonlinear regression models. It does this by using conjunctive clauses in propositional logic to capture the underlying non-linear frequent patterns in the data. These, in turn, are combined into a continuous output through summation, akin to a linear regression function, however, with non-linear components and unity weights. Although the RTM has solved non-linear regression problems with competitive accuracy, the resolution of the output is proportional to the number of clauses employed. This means that computation cost increases with resolution. To reduce this problem, we here introduce i…
A Novel Multi-step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning
Due to the high energy consumption and scalability challenges of deep learning, there is a critical need to shift research focus towards dealing with energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly random number generation to stochastically guide a team of Tsetlin Automata (TA) to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite-state learning automaton that can replace the TA in TM learning, for increased determinis…
The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems
The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…
Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines
The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that requires relatively modest computational power, yet attains competitive accuracy in several benchmarks. TMs are inherently binary; however, many machine learning problems are continuous. While binarization of continuous data through brute-force thresholding has yielded promising accuracy, such an approach is computationally expensive and hinders extrapolation. In this paper, we address these limitations by standardizing features to support scale shifts in the transition from training data to real-world operation, typical for e.g. forecasting. For scalability, we employ sampling to reduce the number of binariz…
Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling
Using logical clauses to represent patterns, Tsetlin Machines (TMs) have recently obtained competitive performance in terms of accuracy, memory footprint, energy, and learning speed on several benchmarks. Each TM clause votes for or against a particular class, with classification resolved using a majority vote. While the evaluation of clauses is fast, being based on binary operators, the voting makes it necessary to synchronize the clause evaluation, impeding parallelization. In this paper, we propose a novel scheme for desynchronizing the evaluation of clauses, eliminating the voting bottleneck. In brief, every clause runs in its own thread for massive native parallelism. For each training…
On Obtaining Classification Confidence, Ranked Predictions and AUC with Tsetlin Machines
Tsetlin machines (TMs) are a promising approach to machine learning that uses Tsetlin Automata to produce patterns in propositional logic, leading to binary (hard) classifications. In many applications, however, one needs to know the confidence of classifications, e.g. to facilitate risk management. In this paper, we propose a novel scheme for measuring TM confidence based on the logistic function, calculated from the propositional logic patterns that match the input. We then use this scheme to trade off precision against recall, producing area under receiver operating characteristic curves (AUC) for TMs. Empirically, using four real-world datasets, we show that AUC is a more sensitive meas…
Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability
Despite significant effort, building models that are both interpretable and accurate is an unresolved challenge for many pattern recognition problems. In general, rule-based and linear models lack accuracy, while deep learning interpretability is based on rough approximations of the underlying inference. Using a linear combination of conjunctive clauses in propositional logic, Tsetlin Machines (TMs) have shown competitive performance on diverse benchmarks. However, to do so, many clauses are needed, which impacts interpretability. Here, we address the accuracy-interpretability challenge in machine learning by equipping the TM clauses with integer weights. The resulting Integer Weighted TM (…
A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks
In this paper, we apply a new promising tool for pattern classification, namely, the Tsetlin Machine (TM), to the field of disease forecasting. The TM is interpretable because it is based on manipulating expressions in propositional logic, leveraging a large team of Tsetlin Automata (TA). Apart from being interpretable, this approach is attractive due to its low computational cost and its capacity to handle noise. To attack the problem of forecasting, we introduce a preprocessing method that extends the TM so that it can handle continuous input. Briefly stated, we convert continuous input into a binary representation based on thresholding. The resulting extended TM is evaluated and analyzed…
Public Transport Passenger Count Forecasting in Pandemic Scenarios Using Regression Tsetlin Machine. Case Study of Agder, Norway
Challenged by the effects of the COVID-19 pandemic, public transport is suffering from low ridership and staggering economic losses. One of the factors which triggered such losses was the lack of preparedness among governments and public transport providers. The losses can be minimized if the passenger count can be predicted with a higher accuracy and the public transport provision adapted to the demand in real time. The present paper explores the use of a novel machine learning algorithm, namely Regression Tsetlin Machine, in using historical passenger transport data from the current COVID-19 pandemic and pre-pandemic period, combined with a calendar of pandemic-related events (e.g. daily …
Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine
The rapid deployment in information and communication technologies and internet-based services have made anomaly based network intrusion detection ever so important for safeguarding systems from novel attack vectors. To this date, various machine learning mechanisms have been considered to build intrusion detection systems. However, achieving an acceptable level of classification accuracy while preserving the interpretability of the classification has always been a challenge. In this paper, we propose an efficient anomaly based intrusion detection mechanism based on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) …