0000000000860147

AUTHOR

K. Darshana Abeyrathna

showing 14 related works from this author

The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems

2019

The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceStatistics - Machine LearningMachine Learning (stat.ML)Machine Learning (cs.LG)
researchProduct

Novel Tsetlin Machine Mechanisms for Logic-based Regression and Classification with Support for Continuous Input, Clause Weighting, Confidence Assess…

2022

VDP::Technology: 500::Information and communication technology: 550
researchProduct

A Novel Multi-Step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning

2020

Due to the high energy consumption and scalability challenges of deep learning, there is a critical need to shift research focus towards dealing with energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly random number generation to stochastically guide a team of Tsetlin Automata to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite-state learning automaton that can replace the Tsetlin Automata in TM learning, for increased d…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceMachine Learning (cs.LG)
researchProduct

A Regression Tsetlin Machine with Integer Weighted Clauses for Compact Pattern Representation

2020

The Regression Tsetlin Machine (RTM) addresses the lack of interpretability impeding state-of-the-art nonlinear regression models. It does this by using conjunctive clauses in propositional logic to capture the underlying non-linear frequent patterns in the data. These, in turn, are combined into a continuous output through summation, akin to a linear regression function, however, with non-linear components and unity weights. Although the RTM has solved non-linear regression problems with competitive accuracy, the resolution of the output is proportional to the number of clauses employed. This means that computation cost increases with resolution. To reduce this problem, we here introduce i…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceStatistics - Machine LearningMachine Learning (stat.ML)Machine Learning (cs.LG)
researchProduct

A Novel Multi-step Finite-State Automaton for Arbitrarily Deterministic Tsetlin Machine Learning

2020

Due to the high energy consumption and scalability challenges of deep learning, there is a critical need to shift research focus towards dealing with energy consumption constraints. Tsetlin Machines (TMs) are a recent approach to machine learning that has demonstrated significantly reduced energy usage compared to neural networks alike, while performing competitively accuracy-wise on several benchmarks. However, TMs rely heavily on energy-costly random number generation to stochastically guide a team of Tsetlin Automata (TA) to a Nash Equilibrium of the TM game. In this paper, we propose a novel finite-state learning automaton that can replace the TA in TM learning, for increased determinis…

Finite-state machineArtificial neural networkLearning automataComputer scienceRandom number generationbusiness.industryDeep learningEnergy consumptionMachine learningcomputer.software_genreAutomatonsymbols.namesakeNash equilibriumsymbolsArtificial intelligencebusinesscomputer
researchProduct

The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems

2019

The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…

Normalization (statistics)Scheme (programming language)Computer scienceInferenceProbability density function02 engineering and technologyPropositional calculusRegression020202 computer hardware & architecturePattern recognition (psychology)0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNoise (video)Algorithmcomputercomputer.programming_language
researchProduct

Adaptive Continuous Feature Binarization for Tsetlin Machines Applied to Forecasting Dengue Incidences in the Philippines

2020

The Tsetlin Machine (TM) is a recent interpretable machine learning algorithm that requires relatively modest computational power, yet attains competitive accuracy in several benchmarks. TMs are inherently binary; however, many machine learning problems are continuous. While binarization of continuous data through brute-force thresholding has yielded promising accuracy, such an approach is computationally expensive and hinders extrapolation. In this paper, we address these limitations by standardizing features to support scale shifts in the transition from training data to real-world operation, typical for e.g. forecasting. For scalability, we employ sampling to reduce the number of binariz…

Artificial neural networkComputer sciencebusiness.industryDeep learning0206 medical engineeringDecision treeSampling (statistics)02 engineering and technologyMachine learningcomputer.software_genreThresholdingSupport vector machinePattern recognition (psychology)0202 electrical engineering electronic engineering information engineeringFeature (machine learning)020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer020602 bioinformatics2020 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

On Obtaining Classification Confidence, Ranked Predictions and AUC with Tsetlin Machines

2020

Tsetlin machines (TMs) are a promising approach to machine learning that uses Tsetlin Automata to produce patterns in propositional logic, leading to binary (hard) classifications. In many applications, however, one needs to know the confidence of classifications, e.g. to facilitate risk management. In this paper, we propose a novel scheme for measuring TM confidence based on the logistic function, calculated from the propositional logic patterns that match the input. We then use this scheme to trade off precision against recall, producing area under receiver operating characteristic curves (AUC) for TMs. Empirically, using four real-world datasets, we show that AUC is a more sensitive meas…

Scheme (programming language)Decision support systemReceiver operating characteristicComputer sciencebusiness.industry0206 medical engineeringBinary number02 engineering and technologyPropositional calculusMachine learningcomputer.software_genreAutomatonSupport vector machine0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceLogistic functionbusinesscomputer020602 bioinformaticscomputer.programming_language2020 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

Extending the Tsetlin Machine With Integer-Weighted Clauses for Increased Interpretability

2020

Despite significant effort, building models that are both interpretable and accurate is an unresolved challenge for many pattern recognition problems. In general, rule-based and linear models lack accuracy, while deep learning interpretability is based on rough approximations of the underlying inference. Using a linear combination of conjunctive clauses in propositional logic, Tsetlin Machines (TMs) have shown competitive performance on diverse benchmarks. However, to do so, many clauses are needed, which impacts interpretability. Here, we address the accuracy-interpretability challenge in machine learning by equipping the TM clauses with integer weights. The resulting Integer Weighted TM (…

FOS: Computer and information sciencesBoosting (machine learning)Theoretical computer scienceinteger-weighted Tsetlin machineGeneral Computer ScienceComputer scienceComputer Science - Artificial Intelligence0206 medical engineeringNatural language understandingInference02 engineering and technologycomputer.software_genre0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machineVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550InterpretabilityArtificial neural networkLearning automatabusiness.industryDeep learningGeneral Engineeringinterpretable machine learningrule-based learninginterpretable AIPropositional calculusSupport vector machineArtificial Intelligence (cs.AI)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESXAIPattern recognition (psychology)020201 artificial intelligence & image processinglcsh:Electrical engineering. Electronics. Nuclear engineeringArtificial intelligencebusinesslcsh:TK1-9971computer020602 bioinformaticsInteger (computer science)
researchProduct

Public Transport Passenger Count Forecasting in Pandemic Scenarios Using Regression Tsetlin Machine. Case Study of Agder, Norway

2021

Challenged by the effects of the COVID-19 pandemic, public transport is suffering from low ridership and staggering economic losses. One of the factors which triggered such losses was the lack of preparedness among governments and public transport providers. The losses can be minimized if the passenger count can be predicted with a higher accuracy and the public transport provision adapted to the demand in real time. The present paper explores the use of a novel machine learning algorithm, namely Regression Tsetlin Machine, in using historical passenger transport data from the current COVID-19 pandemic and pre-pandemic period, combined with a calendar of pandemic-related events (e.g. daily …

Passenger transport2019-20 coronavirus outbreakCoronavirus disease 2019 (COVID-19)business.industryComputer scienceSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)Public transportPreparednessPandemicEconometricsbusinessRegression
researchProduct

Intrusion Detection with Interpretable Rules Generated Using the Tsetlin Machine

2020

The rapid deployment in information and communication technologies and internet-based services have made anomaly based network intrusion detection ever so important for safeguarding systems from novel attack vectors. To this date, various machine learning mechanisms have been considered to build intrusion detection systems. However, achieving an acceptable level of classification accuracy while preserving the interpretability of the classification has always been a challenge. In this paper, we propose an efficient anomaly based intrusion detection mechanism based on the Tsetlin Machine (TM). We have evaluated the proposed mechanism over the Knowledge Discovery and Data Mining 1999 (KDD’99) …

Artificial neural networkbusiness.industryComputer science0206 medical engineeringDecision tree02 engineering and technologyIntrusion detection systemMachine learningcomputer.software_genreRandom forestSupport vector machineStatistical classificationKnowledge extraction0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinesscomputer020602 bioinformaticsInterpretability2020 IEEE Symposium Series on Computational Intelligence (SSCI)
researchProduct

The regression Tsetlin machine: a novel approach to interpretable nonlinear regression

2019

Relying simply on bitwise operators, the recently introduced Tsetlin machine (TM) has provided competitive pattern classification accuracy in several benchmarks, including text understanding. In this paper, we introduce the regression Tsetlin machine (RTM), a new class of TMs designed for continuous input and output, targeting nonlinear regression problems. In all brevity, we convert continuous input into a binary representation based on thresholding, and transform the propositional formula formed by the TM into an aggregated continuous output. Our empirical comparison of the RTM with state-of-the-art regression techniques reveals either superior or on par performance on five datasets. Thi…

021110 strategic defence & security studiesTheoretical computer scienceEmpirical comparisonComputer scienceGeneral Mathematics0211 other engineering and technologiesGeneral EngineeringGeneral Physics and AstronomyBinary number02 engineering and technologyThresholdingRegressionPropositional formula0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingBitwise operationTheme (computing)Nonlinear regressionVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550
researchProduct

Massively Parallel and Asynchronous Tsetlin Machine Architecture Supporting Almost Constant-Time Scaling

2020

Using logical clauses to represent patterns, Tsetlin Machines (TMs) have recently obtained competitive performance in terms of accuracy, memory footprint, energy, and learning speed on several benchmarks. Each TM clause votes for or against a particular class, with classification resolved using a majority vote. While the evaluation of clauses is fast, being based on binary operators, the voting makes it necessary to synchronize the clause evaluation, impeding parallelization. In this paper, we propose a novel scheme for desynchronizing the evaluation of clauses, eliminating the voting bottleneck. In brief, every clause runs in its own thread for massive native parallelism. For each training…

FOS: Computer and information sciencesComputer Science - Machine LearningTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceMachine Learning (cs.LG)
researchProduct

A Scheme for Continuous Input to the Tsetlin Machine with Applications to Forecasting Disease Outbreaks

2019

In this paper, we apply a new promising tool for pattern classification, namely, the Tsetlin Machine (TM), to the field of disease forecasting. The TM is interpretable because it is based on manipulating expressions in propositional logic, leveraging a large team of Tsetlin Automata (TA). Apart from being interpretable, this approach is attractive due to its low computational cost and its capacity to handle noise. To attack the problem of forecasting, we introduce a preprocessing method that extends the TM so that it can handle continuous input. Briefly stated, we convert continuous input into a binary representation based on thresholding. The resulting extended TM is evaluated and analyzed…

FOS: Computer and information sciencesComputer Science - Machine LearningArtificial Intelligence (cs.AI)Computer Science - Artificial IntelligenceMachine Learning (cs.LG)
researchProduct