0000000000890397

AUTHOR

Vanessa Fierro

0000-0001-7081-3697

Dielectric properties of graphite-based epoxy composites

International audience; Composite materials based on epoxy resin filled with various kinds of graphite particles: exfoliated graphite, natural graphite, and coarse, medium and fine artificial graphites have been prepared. Results of broadband dielectric investigations of such materials in wide temperature (25-450 K) and frequency (20 Hz-3 THz) ranges are presented. The dielectric permittivity strongly increases with graphite particle size. The graphite particle size and shape also have a strong impact on freezing temperature, conductivity activation energy and composite electromagnetic absorption properties at room temperature. The lowest percolation threshold is observed for exfoliated gra…

research product

Detection of lung cancer bio-markers in human breath using a micro-fabricated air analyzer

International audience; The analysis of volatile organic compounds (VOCs) that are linked to lung cancer is a very promising way in medical diagnostics because it is non-invasive and potentially inexpensive. In that sense, a silicon micro-analytical platform consisting of a three-dimensional micro-preconcentrator coupled to a silicon spiral gas chromatographic micro-column was built. A metal oxide-based gas sensor acted as a miniaturized gas detector. This system allowed selective detection of VOCs at the sub-ppm level. The present study is focused first on the chromatographic air analyzer fabrication and second on the selection of an appropriate adsorbent. Various adsorbents such as activa…

research product

Electrical transport in carbon black-epoxy resin composites at different temperatures

Citation: J. Appl. Phys. 114, 033707 (2013); doi: 10.1063/1.4815870 (Received 3 May 2013; accepted 27 June 2013; published online 17 July 2013) Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25–500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration…

research product

DIELECTRIC PROPERTIES OF EPOXY RESIN COMPOSITES FILLED WITH NANOCARBON INCLUSIONS

The epoxy resin composites with various carbon additives were investigated in the frequency range of 20 Hz - 3 GHz at temperatures from room to 500 K. The dielectric properties were found to be strongly impacted by percolation threshold. The lowest percolation threshold (< 0.25 wt.%), was observed in composites with single-walled carbon nanotubes.

research product

Electromagnetic shielding efficiency in Ka-band: carbon foam versus epoxy/carbon nanotube composites

The wide application of microwaves stimulates searching for new materials with high electrical conductivity and electromagnetic (EM) interference shielding effectiveness (SE). We conducted a comparative study of EM SE in K a -band demonstrated by ultra-light micro-structural porous carbon solids (carbon foams) of different bulk densities, 0.042 to 0.150  g/cm 3 , and conventional flexible epoxy resin filled with carbon nanotubes (CNTs) in small concentrations, 1.5 wt.%. Microwave probing of carbon foams showed that the transmission through a 2 mm-thick layer strongly decreases with decreasing the pore size up to the level of 0.6%, due to a rise of reflectance ability. At the same time, 1 mm…

research product

Epoxy composites filled with high surface area-carbon fillers

Citation: J. Appl. Phys. 114, 164304 (2013); doi: 10.1063/1.4826529 (Received 24 July 2013; accepted 6 October 2013; published online 22 October 2013) A comprehensive analysis of electrical, electromagnetic (EM), mechanical, and thermal properties of epoxy resin composites filled with 0.25–2.0 wt. % of carbon additives characterized by high surface area, both nano-sized, like carbon nanotubes (CNTs) and carbon black (CBH), and micro-sized exfoliated graphite (EG), was performed. We found that the physical properties of both CNTs- and CBH-based epoxy resin composites increased all together with filler content and even more clearly for CBH than for CNTs. In the case of EG-based composites, go…

research product

Characterization of materials toward toluene traces detection for air quality monitoring and lung cancer diagnosis

International audience; The aim of this work was to identify a nanoporous material able to trap toluene traces in order to develop a gas detection device for indoor air quality monitoring or biomedical diagnosis. A set of various adsorbents such as zeolites and activated carbon microspheres was studied here. First a detailed characterization of their porous properties was performed by nitrogen adsorption. Then adsorption of toluene and other interfering compounds which can selectively adsorbed with it, such as water and carbon dioxide, was studied in order to select the most suitable material. Results revealed that the activatedcarbon microspheres W5 and the zeolite NaY, which exhibit high …

research product

Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor

International audience; The analysis of exhaled volatile organic compounds (VOCs) related to lung cancer is a very promising wayin medical diagnosis because it is non-invasive and much less expensive than traditional medical analysisused so far. In that sense, a silicon micro-analytical platform consisting of a micro-preconcentrator cou-pled to a silicon spiral gas chromatographic micro-column was built, and a metal oxide-based gas sensorwas used as a miniaturized gas detector. This micro-fabricated device was successfully tested to selec-tively detect low concentrations of VOCs considered as lung cancer biomarkers, within a few minuteseven in presence of high concentrations of water vapor …

research product

Microwave response properties of epoxy resin composites filled with graphitic fillers

Composite materials based on epoxy resin filled with various kinds of graphite particles: exfoliated graphite (EG), natural graphite, and coarse, medium and fine artificial graphites have been prepared. The dielectric permittivity strongly increases with graphite particle size. This effect is related to the distance of the investigated filler concentrations to the composites' percolation threshold. Microwave experiments show that exfoliated graphite is, out of investigated graphite particles, the only one being a really effective additive for producing electromagnetic (EM) interference (EMI) shielding: 2 wt.% epoxy/EG is absolutely opaque to electromagnetic radiation at 30 GHz.

research product

Epoxy Resin/Carbon Black Composites Below the Percolation Threshold

International audience; A set of epoxy resin composites filled with 0.25-2.0 wt.% of commercially available ENSACO carbon black (CB) of high and low surface area (CBH and CBL respectively) has been produced. The results of broadband dielectric spectroscopy of manufactured CB/epoxy below the percolation threshold in broad temperature (200 K to 450 K) and frequency (20 Hz to 1 MHz) ranges are reported. The dielectric properties of composites below the percolation threshold are mostly determined by alpha relaxation in pure polymer matrix. The glass transition temperature for CB/epoxy decreases in comparison with neat epoxy resin due to the extra free volume at the polymer-filler interface. At …

research product

Nanomechanical Properties of Epoxy Composites with Carbon Fillers

The key point of this study is investigation of nanomechanical properties of epoxy-based nanocomposites filled with different kinds of carbon nanofillers like exfoliated graphite, high surface-area carbon black, single-walled carbon nanotubes and multi-walled carbon nanotubes

research product

Novel Porous Carbon Material for the Detection of Traces of Volatile Organic Compounds in Indoor Air

International audience; A highly sensitive and selective silicon-based microanalytical prototype was used to identify a few ppb of volatile organic compounds (VOCs) in indoor air. Herein, a new nonactivated tannin-derived carbon synthesized by an environmentally friendly method, DM2C, a MIL-101(Cr) MOF, and a DaY zeolite were selected for the preconcentration of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes). Integrating a small amount of these nanoporous solids inside a miniaturized preconcentration unit led to excellent preconcentration performance. By taking advantage of the high adsorption−desorption capacities of the DM2C adsorbent, concentrations as low as 23.5, 30…

research product

Selection and characterization of adsorbents for the analysis of an explosive-related molecule traces in the air

International audience; This study is focused on the development of a 3D micro-preconcentrator for a sensitive analysis of an explosive-related compound: orthonitrotoluene (ONT). A set of potentially efficient adsorbents for the pre-concentration of ONT was investigated here. An in-depth characterization of their textural properties was carried out in order to better understand their adsorption behavior toward the target analyte. More particularly, this study allowed highlighting the interesting adsorption features of a hydrophobic zeolite and a porous activated carbon in relation to their preconcentration performances toward ONT at the ppb level. Moreover, we found a difference in the adso…

research product