0000000000891202
AUTHOR
F. S. Bergeret
Nonlinear σ model for disordered systems with intrinsic spin-orbit coupling
We derive the nonlinear σ model to describe diffusive transport in normal metals and superconductors with intrinsic spin-orbit coupling (SOC). The SOC is described via an SU(2) gauge field, and we expand the model to the fourth order in gradients to find the leading non-Abelian field-strength contribution. This contribution generates the spin-charge coupling that is responsible for the spin-Hall effect. We discuss how its symmetry differs from the leading quasiclassical higher-order gradient terms. We also derive the corresponding Usadel equation describing the diffusive spin-charge dynamics in superconducting systems. As an example, we apply the obtained equations to describe the anomalous…
Anomalous current in diffusive ferromagnetic Josephson junctions
We demonstrate that in diffusive superconductor/ferromagnet/superconductor (S/F/S) junctions a finite, anomalous Josephson current can flow even at zero phase difference between the S electrodes. The conditions for the observation of this effect are noncoplanar magnetization distribution and a broken magnetization inversion symmetry of the superconducting current. The latter symmetry is intrinsic for the widely used quasiclassical approximation and prevented previous works based on this approximation from obtaining the Josephson anomalous current. We show that this symmetry can be removed by introducing spin-dependent boundary conditions for the quasiclassical equations at the superconducti…
Electron refrigeration in hybrid structures with spin-split superconductors
Electron tunneling between superconductors and normal metals has been used for an efficient refrigeration of electrons in the latter. Such cooling is a nonlinear effect and usually requires a large voltage. Here we study the electron cooling in heterostructures based on superconductors with a spin-splitting field coupled to normal metals via spin-filtering barriers. The cooling power shows a linear term in the applied voltage. This improves the coefficient of performance of electron refrigeration in the normal metal by shifting its optimum cooling to lower voltage, and also allows for cooling the spin-split superconductor by reverting the sign of the voltage. We also show how tunnel couplin…
Long-range spin accumulation from heat injection in mesoscopic superconductors with Zeeman splitting
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Magnetoelectric effects in superconductors due to spin-orbit scattering : Nonlinear σ-model description
We suggest a generalization of the nonlinear σ model for diffusive superconducting systems to account for magnetoelectric effects due to spin-orbit scattering. In the leading orders of spin-orbit strength and gradient expansion, it includes two additional terms responsible for the spin-Hall effect and the spin-current swapping. First, assuming a delta-correlated disorder, we derive the terms from the Keldysh path integral representation of the generating functional. Then we argue phenomenologically that they exhaust all invariants allowed in the effective action to the leading order in the spin-orbit coupling (SOC). Finally, the results are confirmed by a direct derivation of the saddle-poi…
Very large thermophase in ferromagnetic josephson junctions
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Superconducting spintronic tunnel diode
Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼…
Predicted very large thermoelectric effect in ferromagnet-superconductor junctions in the presence of a spin-splitting magnetic field.
We show that a huge thermoelectric effect can be observed by contacting a superconductor whose density of states is spin split by a Zeeman field with a ferromagnet with a nonzero polarization. The resulting thermopower exceeds kB/e by a large factor, and the thermoelectric figure of merit ZT can far exceed unity, leading to heat engine efficiencies close to the Carnot limit. We also show that spin-polarized currents can be generated in the superconductor by applying a temperature bias. © 2014 American Physical Society.
Stimulated quasiparticles in spin-split superconductors
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Spin Hanle effect in mesoscopic superconductors
Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).
Thermoelectric Radiation Detector Based on Superconductor-Ferromagnet Systems
We suggest an ultrasensitive detector of electromagnetic fields exploiting the giant thermoelectric effect recently found in superconductor-ferromagnet hybrid structures. Compared with other types of superconducting detectors where the detected signal is based on variations of the detector impedance, the thermoelectric detector has the advantage of requiring no external driving fields. This is especially relevant in multipixel detectors, where the number of bias lines and the heating induced by them are an issue. We propose different material combinations to implement the detector and provide a detailed analysis of its sensitivity and speed. In particular, we perform a proper noise analysis…