0000000000908261
AUTHOR
M. Guenzi
“Resistenza alla termo-ossidazione di nanocompositi a base di UHMWPE e nanoparticelle multifunzionali ibride”
Resistenza alla termo-ossidazione; UHMWPE; nanoparticelle multifunzionali ibride
α-Tocopherol-induced radical scavenging activity in carbon nanotubes for thermo-oxidation resistant ultra-high molecular weight polyethylene-based nanocomposites
?-Tocopherol, a natural antioxidant molecule, was physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs), and the resulting functionalised particles (f-CNTs) were dispersed in ultra-high molecular weight polyethylene aiming at improving its thermo-oxidation resistance. The success of the functionalization was assessed through spectroscopic and thermal analysis, and the influence of the filler on the thermo-oxidative stability of the nanocomposites was investigated through rheological analyses and infrared spectroscopy. We found that the addition of only 1 wt.% of f-CNTs brings about a surprisingly high oxidation resistance, with a five/ten-fold increase of the i…
Multi-functional polyhedral oligomeric silsesquioxane-functionalized carbon nanotubes for photo-oxidative stable Ultra-High Molecular Weight Polyethylene-based nanocomposites
Abstract Nanohybrid (phPOSS- f -CNTs) based on Carbon Nanotubes (CNTs) and Phenyl Polyhedral Olygomenric Silsesquioxane (phPOSS) have been synthesized to be used as multifunctional filler for polymer nanocomposites. The success of the functionalization procedure has been demonstrated via accurate spectroscopic, spectrometric and thermo-gravimetric analyses. The results reveal that a large portion of phPOSS is covalently linked to CNTs, while a small amount of phPOSS remains physically adsorbed due to the strong interactions coming from π electron coupling between the CNTs and phenyl rings in phPOSS. Small amounts (1 wt.%) of phPOSS- f -CNTs have been dispersed in Ultra High Molecular Weight…
Advanced nano-hybrids for thermo-oxidative-resistant nanocomposites
In the present work, trisilanol phenyl polyhedral olygomeric silsesquiosane (TSPh-POSS) has been physically immobilized onto carbon nanotubes (CNTs) bearing covalently linked Br-terminated long-alkyl chain (Br-alkyl-f-CNTs), and the so obtained hybrid nanoparticles (Br-alkyl-f-CNTs/TSPh-POSS) have been used to prepare ultra-high molecular weight polyethylene (UHMWPE)-based nanocomposites with enhanced thermo-oxidative resistance. The effective immobilization of the TSPh-POSS molecules has been confirmed by spectroscopic and thermo-gravimetric analyses. Besides, the influence of the hybrid nanoparticles on the rheological and mechanical behaviour and morphology of the nanocomposites have bee…
Immobilization of natural anti-oxidants on carbon nanotubes and aging behavior of ultra-high molecular weight polyethylene-based nanocomposites
The use of natural antioxidants is an attractive way to formulate nanocomposites with extended durability and with potential applications in bio-medical field. In this work, Vitamin E (VE) in the form of α-tocopherol and Quercetin (Q) are physically immobilized on the outer surface of multi-walled carbon nanotubes (CNTs). Afterward, the CNTs-VE and CNTs-Q are used to formulate thermally stable ultra high molecular weight polyethylene based nanocomposites. The obtained results in the study of the thermo-oxidation behavior suggest a beneficial effect of the natural anti-oxidant carbon nanotubes systems. The unexpected excellent thermo-resistance of the nanocomposites seems to be due to a syne…
Nano-hybrids based on quercetin and carbon nanotubes with excellent anti-oxidant activity
Abstract Multi-functional nano-hybrids based on Quercetin (Q), a natural antioxidant, and functionalized Carbon Nanotubes (CNTs) have been formulated and used to prepare Ultra High Molecular Weight PolyEthylene (UHMWPE)-based nanocomposites. The study of the nanocomposites rheological behaviour shows that the immobilization of Q molecules onto CNTs outer surface leads to a beneficial effect on the state of the interface between polymer and nanoparticles. Additionally, the investigation of the thermo- and photo-oxidation processes reveals that the hybrids nanoparticles are able to exert a remarkable stabilizing action, due to strong physical interaction between Q and CNTs. In particular, the…
Photo- and thermo- oxidative resistance of novel nanocomposites based on CNT-POSS hybrid nanofillers
Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction
Poly(butylene succinate) (PBS) was grafted on the surface of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) modified multi-walled carbon nanotubes (MWCNTs) via a nitroxide radical coupling reaction. TEMPO functionalized MWCNTs (MWCNTs-g-TEMPO) were synthesized using the Cu(I)-catalyzed azide/alkyne click chemistry approach and the covalent bond of the nitroxide moieties onto the MWCNTs was confirmed via electron paramagnetic resonance (EPR) spectroscopy. The PBS grafting on the sidewalls of MWCNTs was carried out in solution via peroxide-induced formation of macroradicals and it was confirmed by EPR and attenuated total reflectance Fourier transform infrared analysis. Preliminary rheological …
Grafting of polymer chains on the surface of carbon nanotubes via nitroxide radical coupling reaction
Poly(butylene succinate)/MWCNTs nanocomposites with improved dispersion and with nanotubes embedded/immobilized into the polymer matrix were here prepared by an alternative "grafting to" method based on thenitroxide radical coupling reaction. Poly(butylene succinate) (PBS) was grafted on the surface of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) modified multi-walled carbon nanotubes (MWCNTs) via a nitroxide radical coupling reaction. TEMPO functionalized MWCNTs (MWCNTs-g-TEMPO) were synthesized using the Cu(I)-catalyzed azide/alkyne click chemistry approach and the covalent bond of the nitroxide moieties onto the MWCNTs was confirmed via electron paramagnetic resonance (EPR) spectroscopy.…
Thermo-oxidative resistant nanocomposites containing novel hybrid-nanoparticles based on natural polyphenol and carbon nanotubes
Abstract Quercetin (Q), a natural antioxidant molecule, is physically immobilized onto multi-walled carbon nanotubes (CNTs) bearing covalently-linked long-chain alkyl functional groups, and the so obtained hybrid-nanoparticles are used to prepare Ultra High Molecular Weight PolyEthylene-based nanocomposite films with enhanced thermo-oxidation resistance. The effective immobilization of the Q molecules is confirmed by spectroscopic (micro-Raman, ATR-FTIR, and FTIR) and thermo-gravimetric analyses, and the influence of the nanoparticles on the rheological behaviour and thermo-oxidative stability of the nanocomposites are investigated. Rheological analyses (linear viscoelasticity and stress re…