0000000000926914

AUTHOR

L. Capozza

showing 32 related works from this author

K− over K+ multiplicity ratio for kaons produced in DIS with a large fraction of the virtual-photon energy

2018

The K$^{-}$ over K$^{+}$ multiplicity ratio is measured in deep-inelastic scattering, for the first time for kaons carrying a large fraction $z$ of the virtual-photon energy. The data were obtained by the COMPASS collaboration using a 160 GeV muon beam and an isoscalar $^6$LiD target. The regime of deep-inelastic scattering is ensured by requiring $Q^2>1$ (GeV/$c)^2$ for the photon virtuality and $W>5$ GeV/$c^2$ for the invariant mass of the produced hadronic system. Kaons are identified in the momentum range from 12 GeV/$c$ to 40 GeV/$c$, thereby restricting the range in Bjorken-$x$ to $0.010.75$. For very large values of $z$, $i.e.$ $z>0.8$, we observe the kaon multiplicity ratio to fall …

Hadron0 [higher-order]target: isoscalar01 natural sciencesCOMPASSdeep inelastic scattering [muon+ nucleon]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)K: multiplicityHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]isoscalar [target]Invariant massNuclear ExperimentBosonPhysicsQuantum chromodynamicsquark: fragmentation functionhigher-order: 0photonperturbation theory: higher-orderhep-phмюоныlcsh:QC1-999Bjorken [scaling]High Energy Physics - Phenomenologybeam [muon]рассеяниеfactorization [cross section]multiplicity [pi]Particle Physics - Experimentperturbation theory [quantum chromodynamics]Particle physicsNuclear and High Energy PhysicsMesonFOS: Physical sciencesratio [multiplicity]530fragmentation function [quark]x-dependencescaling: Bjorkencharged particle: multiplicityphase spacemultiplicity [charged particle][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]виртуальные фотоны0103 physical sciencesddc:530universalityquantum chromodynamics: perturbation theory010306 general physicsParticle Physics - Phenomenologymuon+ nucleon: deep inelastic scatteringMuonmultiplicity: ratiopi: multiplicity010308 nuclear & particles physicshep-exmuon: beamMultiplicity (mathematics)cross section: factorizationCERN SPSDeep inelastic scatteringhigher-order [perturbation theory][PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]каоны[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentmultiplicity [K]hadronizationlcsh:Physicsexperimental resultsPhysics Letters B
researchProduct

Design and Performance of a Lead Fluoride Detector as a Luminosity Monitor

2016

Nuclear instruments & methods in physics research / A 826, 6 - 14(2015). doi:10.1016/j.nima.2016.04.071

PhysicsNuclear and High Energy PhysicsAnnihilationPhysics - Instrumentation and Detectors010308 nuclear & particles physicsScatteringPhysics::Instrumentation and DetectorsMonte Carlo methodDetectorFOS: Physical sciencesDESYInstrumentation and Detectors (physics.ins-det)01 natural sciences530High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesHigh Energy Physics::Experimentddc:530Møller scattering010306 general physicsInstrumentationCherenkov radiationBhabha scattering
researchProduct

Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

2012

The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong depende…

QuarkNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectHadronFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryCOMPASSSIDISspin asymmetriesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Compass0103 physical sciences010306 general physicsNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Sivers asymmetriesLarge Hadron Colliderta114010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDeep inelastic scatteringCOMPASS; SIDIS; spin asymmetries; Sivers asymmetriesTransverse planeDistribution functionHigh Energy Physics::ExperimentCOMPASS SIDIS TMD Sivers asymmetryParticle Physics - Experiment
researchProduct

Search for exclusive photoproduction ofZc±(3900) at COMPASS

2015

A search for the exclusive production of the Z(c)(+/-)(3900) hadron by virtual photons has been performed in the channel Z(c)(+/-)(3900). J/Psi pi(+/-). The data cover the range from 7GeV to 19GeV in the centre-of- mass energy of the photon-nucleon system. The full set of the COMPASS data set collected with a muon beam between 2002 and 2011 has been used. An upper limit for the ratio BR(Z(c)(+/-)(3900)-> J/Psi pi(+/-)) x sigma(gamma N) -> Z(c)(+/-)(3900) N/sigma gamma N -> J/Psi N 3.7 x10(-3) has been established at the confidence level of90%. (C) 2015 The Authors. Published by Elsevier B.V.

PhysicsNuclear and High Energy PhysicsParticle physicsMuonCompassHadronAnalytical chemistrySigmaHigh Energy Physics::ExperimentProduction (computer science)TetraquarkZc(3900)Range (computer programming)Physics Letters B
researchProduct

Evidence for Strange-Quark Contributions to the Nucleon’s Form Factors atQ2=0.108   (GeV/c)2

2005

We report on a measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized protons with the A4 apparatus at MAMI in Mainz at a four momentum transfer value of ${Q}^{2}=0.108\text{ }(\mathrm{GeV}/c{)}^{2}$ and at a forward electron scattering angle of $30\ifmmode^\circ\else\textdegree\fi{}l{\ensuremath{\theta}}_{e}l40\ifmmode^\circ\else\textdegree\fi{}$. The measured asymmetry is ${A}_{LR}(\stackrel{\ensuremath{\rightarrow}}{e}p)=[\ensuremath{-}1.36\ifmmode\pm\else\textpm\fi{}0.29(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.13(\mathrm{syst})]\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$. The expectation from the standard model as…

PhysicsStrange quarkParticle physics010308 nuclear & particles physicsHadronGeneral Physics and AstronomyElementary particleFermionStrangeness01 natural sciencesBaryon0103 physical sciences010306 general physicsNucleonLeptonPhysical Review Letters
researchProduct

Spin alignment and violation of the OZI rule in exclusive ω and ϕ production in pp collisions

2014

Exclusive production of the isoscalar vector mesons $\omega$ and $\phi$ is measured with a 190 GeV$/c$ proton beam impinging on a liquid hydrogen target. Cross section ratios are determined in three intervals of the Feynman variable $x_{F}$ of the fast proton. A significant violation of the OZI rule is found, confirming earlier findings. Its kinematic dependence on $x_{F}$ and on the invariant mass $M_{p\mathrm{V}}$ of the system formed by fast proton $p_\mathrm{fast}$ and vector meson $V$ is discussed in terms of diffractive production of $p_\mathrm{fast}V$ resonances in competition with central production. The measurement of the spin density matrix element $\rho_{00}$ of the vector mesons…

Particle physicsNuclear and High Energy PhysicsOZI rule testPOLARIZATIONProtonMesonPROTON-PROTON COLLISIONS; LOW-ENERGY PHOTOPRODUCTION; ZWEIG-IIZUKA RULE; MESON PRODUCTION; EXPERIMENTAL TESTS; SELECTION RULE; POLARIZATION; NUCLEON; PIONIsoscalarPROTON-PROTON COLLISIONSMESON PRODUCTIONNuclear TheoryEXPERIMENTAL TESTS530OZI ruleHigh Energy Physics - ExperimentNuclear physicstestPIONInvariant masslcsh:Nuclear and particle physics. Atomic energy. RadioactivityLOW-ENERGY PHOTOPRODUCTIONVector mesonNuclear ExperimentNUCLEONNuclear ExperimentSpin-½PhysicsHigh Energy Physics::PhenomenologySELECTION RULEBaryonOZI ruleZWEIG-IIZUKA RULElcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

The spin structure functiong1pof the proton and a test of the Bjorken sum rule

2016

New results for the double spin asymmetry A(1)(p) and the proton longitudinal spin structure function g(1)(p) are presented. They were obtained by the COMPASS Collaboration using polarised 200 GeV muons scattered off a longitudinally polarised NH3 target. The data were collected in 2011 and complement those recorded in 2007 at 160 GeV, in particular at lower values of x. They improve the statistical precision of g(1)(p)(x) by about a factor of two in the region x less than or similar to 0.02. A next-to-leading order QCD fit to the g(1) world data is performed. It leads to a new determination of the quark spin contribution to the nucleon spin, Delta Sigma, ranging from 0.26 to 0.36, and to a…

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsMuonProton010308 nuclear & particles physicsDeep inelastic scattering01 natural sciencesHelicityNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentSum rule in quantum mechanics010306 general physicsNucleonSpin-½Physics Letters B
researchProduct

Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0

2017

The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…

Quantum chromodynamicsPhysicsParticle physicsLuminosity (scattering theory)AnnihilationMeson010308 nuclear & particles physics7. Clean energy01 natural sciencesParticle identificationNuclear physicsFactorizationAntiproton0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsBar (unit)Physical Review D
researchProduct

Longitudinal double-spin asymmetry A1p and spin-dependent structure function g1p of the proton at small values of x and Q2

2018

Abstract We present a precise measurement of the proton longitudinal double-spin asymmetry A 1 p and the proton spin-dependent structure function g 1 p at photon virtualities 0.006 ( GeV / c ) 2 Q 2 1 ( GeV / c ) 2 in the Bjorken x range of 4 × 10 − 5 x 4 × 10 − 2 . The results are based on data collected by the COMPASS Collaboration at CERN using muon beam energies of 160 GeV and 200 GeV . The statistical precision is more than tenfold better than that of the previous measurement in this region. In the whole range of x , the measured values of A 1 p and g 1 p are found to be positive. It is for the first time that spin effects are found at such low values of x .

PhysicsNuclear and High Energy PhysicsMuonProton010308 nuclear & particles physicsmedia_common.quotation_subjectHadronElementary particle01 natural sciencesAsymmetryBaryonNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonLeptonmedia_commonPhysics Letters B
researchProduct

Multiplicities of charged pions and charged hadrons from deep-inelastic scattering of muons off an isoscalar target

2017

Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x , the relative virtual-photon energy y and the relative hadron energy z . Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target ( 6 LiD). They cover the kinematic domain in the photon virtuality Q2>1(GeV/c)2 , 0.004 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.

QuarkNuclear and High Energy PhysicsPhotonIsoscalarHadronNuclear TheoryHERMEStarget: isoscalar[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesCOMPASSscaling: BjorkenNuclear physicsPionAstronomi astrofysik och kosmologi[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astronomy Astrophysics and CosmologyPion multiplicitiesNuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentRICHDeep inelastic scattering; Fragmentation functions; Pion multiplicities; Nuclear and High Energy PhysicsPhysicsquark: fragmentation functionMuonpi: multiplicityhep-ex010308 nuclear & particles physicsScatteringmuon: beamhigher-order: 0Fragmentation functionphotonFragmentation functionsDeep inelastic scatteringhadron: energylcsh:QC1-999kinematicsPion multiplicitieHigh Energy Physics::ExperimentParticle Physics - Experimentlcsh:PhysicsDeep inelastic scattering
researchProduct

Exclusive muoproduction on transversely polarised protons and deuterons

2012

The transverse target spin azimuthal asymmetry A(UT)(sin(phi-phi s)) in hard exclusive production of rho(0) mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E-q, which are related to the orbital angular momentum of quarks in the nucleon. The Q(2), x-B-j and p(T)(2) dependence of A(UT)(sin(phi-phi s)) is presented in a wide kinematic range: 1 (GeV/c)(2) < Q(2) < 10 (GeV/c)(2), 0.003 < xB(j) < 0.3 and 0.05 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for protons or 0.10 (GeV/c)(2) < p(T)(2) < 0.5 (GeV/c)(2) for deuterons. Results for deuteron…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsAngular momentumMuonMeson010308 nuclear & particles physicsmedia_common.quotation_subjectNuclear TheoryParton01 natural sciencesAsymmetryNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonmedia_commonSpin-½Nuclear Physics B
researchProduct

The backward end-cap for the PANDA electromagnetic calorimeter

2015

The PANDA experiment at the new FAIR facility will cover a broad experimental programme in hadron structure and spectroscopy. As a multipurpose detector, the PANDA spectrometer needs to ensure almost 4π coverage of the scattering solid angle, full and accurate multiple-particle event reconstruction and very good particle identification capabilities. The electromagnetic calorimeter (EMC) will be a key item for many of these aspects. Particle energies ranging from some MeVs to several GeVs have to be measured with a relative resolution of 1% ⊕ 2%/√E/GeV . It will be a homogeneous calorimeter made of PbWO4 crystals and will be operated at -25°C, in order to improve the scintillation light yiel…

PhysicsHistoryScintillationSpectrometerCalorimeter (particle physics)APDSPhysics::Instrumentation and Detectorsbusiness.industryDetectorAvalanche photodiodeParticle identificationComputer Science ApplicationsEducationlaw.inventionNuclear physicsOpticslawNuclear ExperimentbusinessEvent reconstructionJournal of Physics: Conference Series
researchProduct

Study of Two-Photon Exchange via the Beam Transverse Single Spin Asymmetry in Electron-Proton Elastic Scattering at Forward Angles over a Wide Energy…

2020

We report on a new measurement of the beam transverse single spin asymmetry in electron-proton elastic scattering, $A^{ep}_{\perp}$, at five beam energies from 315.1 MeV to 1508.4 MeV and at a scattering angle of $30^{\circ} < \theta < 40^{\circ}$. The covered $Q^2$ values are 0.032, 0.057, 0.082, 0.218, 0.613 (GeV/c)$^2$. The measurement clearly indicates significant inelastic contributions to the two-photon-exchange (TPE) amplitude in the low-$Q^2$ kinematic region. No theoretical calculation is able to reproduce our result. Comparison with a calculation based on unitarity, which only takes into account elastic and $\mathrm{\pi N}$ inelastic intermediate states, suggests that there are ot…

Protonmedia_common.quotation_subjectFOS: Physical sciencesGeneral Physics and AstronomyElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetrybeam: energyelectron p: elastic scatteringpi nucleon: intermediate statebenchmark0103 physical scienceseta nucleonpolarization: transverseunitarityNuclear Experiment (nucl-ex)010306 general physicsNuclear Experimentmedia_commonSpin-½PhysicsElastic scatteringexchange: two-photonUnitarityScatteringscattering3. Good healthtransverseintermediate state* Automatic Keywords *kinematicsElementary Particles and FieldsHigh Energy Physics::ExperimentAtomic physicsspin: asymmetryBeam (structure)experimental resultsPhysical Review Letters
researchProduct

The COMPASS Setup for Physics with Hadron Beams

2015

The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…

Particle physicsCalorimetry; Data acquisition and reconstruction; Fixed target experiment for hadron spectroscopy; Front-end electronics; Micro Pattern detectors and Drift chambers; Monte-Carlo simulation; RICH; Instrumentation; Nuclear and High Energy PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesMonte-Carlo simulation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Calorimetryacquisition and reconstruction01 natural sciences7. Clean energyMicro Pattern detectors and Drift chambersHigh Energy Physics - ExperimentNuclear physicsMomentumHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopy0103 physical sciencesDetectors and Experimental Techniques010306 general physicsRICHInstrumentationFixed target experiment for hadron spectroscopyPhysicsDataLarge Hadron Collider010308 nuclear & particles physicsMicroMegas detectorFront-end electronicsInstrumentation and Detectors (physics.ins-det)Micro Pattern detectorsand Drift chambersData acquisition and reconstructionGas electron multiplierPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)Front-end electronicMicro Pattern detectors and Drift chamber
researchProduct

Study of doubly strange systems using stored antiprotons

2016

Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …

Particle physicsNuclear and High Energy PhysicsCOLLISIONSStrong interactionNuclear TheoryhyperatomsAntiprotons; Hyperatoms; Hypernuclei; Strangeness; Nuclear and High Energy PhysicsEXCHANGE CURRENTSAntiprotonsStrangeness01 natural sciencesPartícules (Física nuclear)NONuclear physicsSubatomär fysikHypemucleistrangenessDECUPLET BARYONSELECTRIC QUADRUPOLE-MOMENTSHyperatoms0103 physical sciencesSubatomic PhysicsHypernuclei010306 general physicsNuclear ExperimentPhysicshypernucleiNUCLEI010308 nuclear & particles physicsHyperonStrangenessTransport theoryDOUBLE-LAMBDA-HYPERNUCLEIMODELOMEGAAntiprotonPhysics::Accelerator PhysicsHeavy ionHigh Energy Physics::ExperimentantiprotonsINTERMEDIATE ENERGIESEMULSIONNuclear Physics A
researchProduct

Measurement of the parity violating asymmetry in the quasielastic electron-deuteron scattering and improved determination of the magnetic strange for…

2016

A new measurement of the parity-violating asymmetry in the electron-deuteron quasielastic scattering for backward angles at $⟨{Q}^{2}⟩=0.224\text{ }\text{ }{(\mathrm{GeV}/c)}^{2}$, obtained in the A4 experiment at the Mainz Microtron accelerator (MAMI) facility, is presented. The measured asymmetry is ${A}_{PV}^{d}=(\ensuremath{-}20.11\ifmmode\pm\else\textpm\fi{}0.8{7}_{\mathrm{stat}}\ifmmode\pm\else\textpm\fi{}\phantom{\rule{0ex}{0ex}}1.0{3}_{\mathrm{sys}})\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$. A combination of these data with the proton measurements of the parity-violating asymmetry in the A4 experiment yields a value for the effective isovector axial-vector form facto…

Particle physicsacceleratorparity: violation: asymmetrymedia_common.quotation_subjectLattice field theoryisovectorelectron deuteron: inelastic scatteringpolarized beamElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]form factor: axial-vector01 natural sciencesAsymmetryMainz Linac0103 physical sciencesdeuterium: targetradiative correctionelectron: beam010306 general physicsmedia_commonPhysicsQuasielastic scatteringIsovector010308 nuclear & particles physicsScatteringbackgroundlattice field theoryParity (physics)helicityanapoleHelicityelectron deuteron: scatteringexperimental results
researchProduct

Measurement of the Transverse Beam Spin Asymmetry in Elastic Electron Proton Scattering and the Inelastic Contribution to the Imaginary Part of the T…

2004

We report on a measurement of the asymmetry in the scattering of transversely polarized electrons off unpolarized protons, A$_\perp$, at two Q$^2$ values of \qsquaredaveragedlow (GeV/c)$^2$ and \qsquaredaveragedhighII (GeV/c)$^2$ and a scattering angle of $30^\circ &lt; ��_e &lt; 40^\circ$. The measured transverse asymmetries are A$_{\perp}$(Q$^2$ = \qsquaredaveragedlow (GeV/c)$^2$) = (\experimentalasymmetry alulowcorr $\pm$ \statisticalerrorlow$_{\rm stat}$ $\pm$ \combinedsyspolerrorlowalucor$_{\rm sys}$) $\times$ 10$^{-6}$ and A$_{\perp}$(Q$^2$ = \qsquaredaveragedhighII (GeV/c)$^2$) = (\experimentalasymme tryaluhighcorr $\pm$ \statisticalerrorhigh$_{\rm stat}$ $\pm$ \combinedsyspolerrorhi…

PhysicsElastic scatteringProton13.60.Fz 11.30.Er 13.40.Gp010308 nuclear & particles physicsScatteringElectric form factorGeneral Physics and AstronomyFOS: Physical sciencesInelastic scattering01 natural sciencesNuclear physicsScattering amplitudeAmplitude0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentAtomic physicsNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear Experiment
researchProduct

Erratum to: Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/ $$c$$ c

2015

Author(s): Adolph, C; Alekseev, MG; Alexakhin, VY; Alexandrov, Y; Alexeev, GD; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, SU; Cicuttin, A; Crespo, ML; Dalla Torre, S; Dasgupta, SS; Dasgupta, S; Denisov, OY; Donskov, SV; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, PD; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger Jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedri…

Nuclear physicsPhysicsMuonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physics0103 physical sciencesHadronTransverse momentum010306 general physicsDeep inelastic scattering53001 natural sciencesEngineering (miscellaneous)The European Physical Journal C
researchProduct

Study of Σ(1385) and Ξ(1321) hyperon and antihyperon production in deep inelastic muon scattering

2013

Large samples of \Lambda, \Sigma(1385) and \Xi(1321) hyperons produced in deep-inelastic muon scattering off a ^6LiD target were collected with the COMPASS experimental setup at CERN. The relative yields of \Sigma(1385)^+, \Sigma(1385)^-, \bar{\Sigma}(1385)^-, \bar{\Sigma}(1385)^+, \Xi(1321)^-, and \bar{\Xi}(1321)^+ hyperons decaying into \Lambda(\bar{\Lambda})\pi were measured. The heavy hyperon to \Lambda and heavy antihyperon to \bar{\Lambda} yield ratios were found to be in the range 3.8% to 5.6% with a relative uncertainty of about 10%. They were used to tune the parameters relevant for strange particle production of the LEPTO Monte Carlo generator.

disParticle physicsStrange quarkdis; hyperon productionPhysics and Astronomy (miscellaneous)diLambda01 natural sciencesCOMPASSHigh Energy Physics - Experimenthyperon production0103 physical sciencesCHARGED CURRENT INTERACTIONSCHARGED CURRENT INTERACTIONS; (LAMBDA)OVER-BAR POLARIZATION; COMPASS010306 general physicsNuclear ExperimentEngineering (miscellaneous)Nuclear ExperimentPhysicsMuon010308 nuclear & particles physicsGenerator (category theory)High Energy Physics::PhenomenologyHyperon(LAMBDA)OVER-BAR POLARIZATIONSigmaProduction (computer science)High Energy Physics::ExperimentParticle Physics - ExperimentBar (unit)
researchProduct

Measurement of Strange-Quark Contributions to the Nucleon's Form Factors atQ2=0.230   (GeV/c)2

2004

We report on a measurement of the parity-violating asymmetry in the scattering of longitudinally polarized electrons on unpolarized protons at a Q2 of 0.230 (GeV/c)(2) and a scattering angle of theta (e) = 30 degrees - 40 degrees. Using a large acceptance fast PbF2 calorimeter with a solid angle of delta omega = 0.62 sr, the A4 experiment is the first parity violation experiment to count individual scattering events. The measured asymmetry is A(phys)=(-5.44+/-0.54(stat)+/-0.26(sys))x10(-6). The standard model expectation assuming no strangeness contributions to the vector form factors is A(0) = (-6.30+/-0.43) x 10(-6). The difference is a direct measurement of the strangeness contribution t…

PhysicsStrange quarkParticle physicsProton010308 nuclear & particles physicsScatteringHadronGeneral Physics and AstronomyStrangeness01 natural sciencesOmegaNuclear physicsBaryon0103 physical sciences010306 general physicsNucleonPhysical Review Letters
researchProduct

Multiplicities of charged kaons from deep-inelastic muon scattering off an isoscalar target

2017

Precise measurements of charged-kaon multiplicities in deep inelastic scattering were performed. The results are presented in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y, and the fraction z of the virtual-photon energy carried by the produced hadron. The data were obtained by the COMPASS Collaboration by scattering 160 GeV muons off an isoscalar 6 LiD target. They cover the kinematic domain 1 (GeV/c)2 &lt; Q2 &lt; 60 (GeV/c)^2 in the photon virtuality, 0.004 &lt; x &lt; 0.4, 0.1 &lt; y &lt; 0.7, 0.20 &lt; z &lt; 0.85, and W &gt; 5 GeV/c^2 in the invariant mass of the hadronic system. The results from the sum of the z-integrated K+ and K- mu…

QuarkStrange quarkParticle physicsNuclear and High Energy PhysicsIsoscalarHadronFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesKaon multiplicitieStrange quark530High Energy Physics - ExperimentSubatomär fysikNuclear physicsHigh Energy Physics - Experiment (hep-ex)Subatomic Physics0103 physical sciencesNuclear Physics - Experimentddc:530Invariant massNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsNuclear ExperimentPhysicsMuonhep-ex010308 nuclear & particles physicsScatteringQuark fragmentation functionDeep inelastic scatteringlcsh:QC1-999Quark fragmentation functionsDeep inelastic scattering; Kaon multiplicities; Quark fragmentation functions; Strange quark; Nuclear and High Energy PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentKaon multiplicitieslcsh:PhysicsDeep inelastic scattering
researchProduct

Real-time calibration of the A4 electromagnetic lead fluoride (PbF2) calorimeter

2011

Abstract Sufficient energy resolution is the key issue for the calorimetry in particle and nuclear physics. The calorimeter of the A4 parity violation experiment at MAMI is a segmented calorimeter where the energy of an event is determined by summing the signals of neighboring channels. In this case, the precise matching of the individual modules is crucial to obtain a good energy resolution. We have developed a calibration procedure for our total absorbing electromagnetic calorimeter which consists of 1022 lead fluoride (PbF 2 ) crystals. This procedure reconstructs the single-module contributions to the events by solving a linear system of equations, involving the inversion of a 1022×1022…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsLead fluorideCalorimetry[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]System of linear equations7. Clean energy01 natural sciencesParticle detectorComputational physicsCalorimeterNuclear physicsElectromagnetic calorimeter0103 physical sciencesMeasuring instrument010306 general physicsInstrumentationBeam (structure)
researchProduct

Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons

2015

Measurements of the Collins and Sivers asymmetries for charged pions and charged and neutral kaons produced in semi-inclusive deep-inelastic scattering of high energy muons off transversely polarised protons are presented. The results were obtained using all the available COMPASS proton data, which were taken in the years 2007 and 2010. The Collins asymmetries exhibit in the valence region a non-zero signal for pions and there are hints of non-zero signal also for kaons. The Sivers asymmetries are found to be positive for positive pions and kaons and compatible with zero otherwise.

High energyParticle physicsNuclear and High Energy PhysicsProtonNuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]spin01 natural sciencesSIDIS530SINGLE SPIN ASYMMETRIESHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)TMD PDF and FFPionNuclear and High Energy Physics; TMD PDF and FF; SIDIS; spinRATIO0103 physical sciencesDISTRIBUTIONSSCATTERING[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]010306 general physicsNuclear ExperimentNuclear and High Energy PhysicPhysicsMuon010308 nuclear & particles physicsScatteringlcsh:QC1-999ddc:High Energy Physics::ExperimentParticle Physics - Experimentlcsh:Physics
researchProduct

Measurement of Strange Quark Contributions to the Vector Form Factors of the Proton atQ2=0.22  (GeV/c)2

2009

A new measurement of the parity violating asymmetry in elastic electron scattering on hydrogen at backward angles and at a four momentum transfer of Q{sup 2}=0.22 (GeV/c){sup 2} is reported here. The measured asymmetry is A{sub LR}=(-17.23{+-}0.82{sub stat}{+-}0.89{sub syst})x10{sup -6}. The standard model prediction assuming no strangeness is A{sub 0}=(-15.87{+-}1.22)x10{sup -6}. In combination with previous results from measurements at forward angles, it is possible to disentangle for the first time the strange form factors at this momentum transfer, G{sub E}{sup s}=0.050{+-}0.038{+-}0.019 and G{sub M}{sup s}=-0.14{+-}0.11{+-}0.11.

PhysicsStrange quarkParticle physicsProton010308 nuclear & particles physicsHadronMomentum transferGeneral Physics and AstronomyElementary particleStrangeness01 natural sciencesBaryonNuclear physics0103 physical sciences010306 general physicsNucleonPhysical Review Letters
researchProduct

Measurement of azimuthal hadron asymmetries in semi-inclusive deep inelastic scattering off unpolarised nucleons

2014

Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\cos\phi_h$, $\cos2\phi_h$ and $\sin\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\cos \phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.

Particle physicsNuclear and High Energy PhysicsTMD SIDIS PDFHadronFOS: Physical sciencesSIVERS ASYMMETRIESMUON PROTON-SCATTERINGCOLLINSSIDISPDF01 natural sciences530High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)LEPTOPRODUCTIONDEPENDENCE0103 physical sciencesDISTRIBUTIONSlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsNuclear ExperimentPhysicsLarge Hadron ColliderMuon010308 nuclear & particles physicsTMDELECTROPRODUCTIONDeep inelastic scatteringAzimuthAmplitudeMUON PROTON-SCATTERING; SIVERS ASYMMETRIES; SPIN ASYMMETRIES; DISTRIBUTIONS; ELECTROPRODUCTION; LEPTOPRODUCTION; DEPENDENCE; COLLINSlcsh:QC770-798High Energy Physics::ExperimentNucleonSPIN ASYMMETRIESParticle Physics - ExperimentBeam (structure)
researchProduct

A high power liquid hydrogen target for the Mainz A4 parity violation experiment

2005

We present a new powerful liquid hydrogen target developed for the precise study of parity violating electron scattering on hydrogen and deuterium. This target has been designed to have minimal target density fluctuations under the heat load of a 20$\mu$A CW 854.3 MeV electron beam without rastering the electron beam. The target cell has a wide aperture for scattered electrons and is axially symmetric around the beam axis. The construction is optimized to intensify heat exchange by a transverse turbulent mixing in the hydrogen stream, which is directed along the electron beam. The target is constructed as a closed loop circulating system cooled by a helium refrigerator. It is operated by a …

PhysicsNuclear and High Energy PhysicsNatural convectionHydrogenFOS: Physical scienceschemistry.chemical_elementElectronHelium-3 refrigeratorchemistryHeat transferCathode rayPhysics::Accelerator PhysicsNuclear Experiment (nucl-ex)Atomic physicsNuclear ExperimentInstrumentationLiquid hydrogenBeam (structure)Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

New Measurements of the Beam Normal Spin Asymmetries at Large Backward Angles with Hydrogen and Deuterium Targets

2017

International audience; New measurements of the beam normal single spin asymmetry in the electron elastic and quasielastic scattering on the proton and deuteron, respectively, at large backward angles and at ⟨Q2⟩=0.22  (GeV/c)2 and ⟨Q2⟩=0.35  ( GeV/c)2 are reported. The experimentally observed asymmetries are compared with the theoretical calculation of Pasquini and Vanderhaeghen [Phys. Rev. C 70, 045206 (2004).PRVCAN0556-281310.1103/PhysRevC.70.045206]. The agreement of the measurements with the theoretical calculations shows a dominance of the inelastic intermediate excited states of the nucleon, πN and the Δ resonance. The measurements explore a new, important parameter region of the exc…

Born approximationelectronProtonGeneral Physics and AstronomyElectronelectron nucleonInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesResonance (particle physics)Nuclear physicsstatistical analysis0103 physical sciencesexcited stateBorn approximation010306 general physicsNuclear ExperimentSpin-½hydrogen: targetPhysicsQuasielastic scatteringexchange: two-photon010308 nuclear & particles physicsnucleoninelastic scatteringangular dependenceresonanceHigh Energy Physics::Experimentdeuteron: targetAtomic physicsNucleonspin: asymmetryexperimental resultsphoton: virtual
researchProduct

Corrigendum to “Odd and even partial waves of ηπ− and η′π− in π−p → η(′)π−p at 191 GeV/c” [Phys. Lett. B 740 (2015) 303–311]

2020

Abstract In Fig. 5 on p. 311 of our Phys. Lett. B 740 (2015) 303 an adjustment by 180 ∘ is required for the phases with respect to the L = 2 , M = 1 wave, of the following waves: L = 1 , 3 , 5 with M = 1 , and L = 2 with M = 2 . After this correction (Fig. 5 (corrected) below), the extracted partial waves describe the angular distribution of the η ( ′ ) in the Gottfried-Jackson (GJ) frame, using Eq. (4) with implicit Condon-Shortley phase convention. The other results of our paper are not affected. The right-handed GJ coordinate system was defined by the z-axis pointing in the direction of the beam in the η ( ′ ) π − center-of-mass system and the y-axis pointing in the direction of p recoil…

PhysicsNuclear and High Energy PhysicsAngular distributionRecoilCoordinate systemPhase (waves)Atomic physicsBeam (structure)lcsh:Physicslcsh:QC1-999Physics Letters B
researchProduct

A luminosity monitor for the A4 parity violation experiment at MAMI

2005

A water Cherenkov luminosity monitor system with associated electronics has been developed for the A4 parity violation experiment at MAMI. The detector system measures the luminosity of the hydrogen target hit by the MAMI electron beam and monitors the stability of the liquid hydrogen target. Both is required for the precise study of the count rate asymmetries in the scattering of longitudinally polarized electrons on unpolarized protons. Any helicity correlated fluctuation of the target density leads to false asymmetries. The performance of the luminosity monitor, investigated in about 2000 hours with electron beam, and the results of its application in the A4 experiment are presented.

PhysicsNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectFOS: Physical sciencesElectronAsymmetryHelicityParticle detectorCharged particleBaryonNuclear physicsHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationCherenkov radiationmedia_commonLeptonNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Transverse-momentum-dependent Multiplicities of Charged Hadrons in Muon-Deuteron Deep Inelastic Scattering

2017

A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}&gt;1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W &gt; 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 &lt; x &lt; 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 &lt; z &lt; 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 &lt; P_{\rm{hT}}^{2} &lt; 3$ (GeV/$c$)$^2$. The multiplicities are pres…

CERN LabComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATIONMULTIPLICITIESdimension: 3PT DEPENDENTComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMStarget: isoscalarmuon deuteron: deep inelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-extransverse momentum dependencehadron: transverse momentumSIDISCOMPASSGeneralLiterature_MISCELLANEOUSHigh Energy Physics - Experimentscaling: BjorkenSubatomär fysikcharged particle: multiplicityHigh Energy Physics - Experiment (hep-ex)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]mass: hadronicSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Physics - Experiment[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)quantum chromodynamics: perturbation theoryNuclear ExperimentNuclear ExperimentDIShep-exhadron: multiplicityeffect: nonperturbativeperturbation theory: higher-orderCERN SPSphoton: energysemi-inclusive reactionComputingMethodologies_PATTERNRECOGNITIONkinematicsDIS; SIDIS; MULTIPLICITIES; PT DEPENDENTHigh Energy Physics::ExperimentParticle Physics - Experimentexperimental resultsphoton: virtual
researchProduct

Feasibility study for the measurement of pi N transition distribution amplitudes at (P)over-barANDA in (P)over-barp -> J/psi pi(0)

2017

The exclusive charmonium production process in pp¯ annihilation with an associated π0 meson pp¯ → J=ψπ0 is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J=ψ → eþe− decay channel with the AntiProton ANnihilation at DArmstadt (PANDA ¯ ) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the pp¯ → πþπ−π0 and pp¯ → J=ψπ0π0 reactions are performed with PANDAROOT, the simulation and analysis software framework of the PANDA ¯ experiment. It is shown that the measurement can be done at PANDA ¯ with significant constraining power under the assu…

Partícules (Física nuclear)
researchProduct

Measurement of the Charged-Pion Polarizability

2015

The COMPASS collaboration at CERN has investigated pion Compton scattering, $\pi^-\gamma\rightarrow \pi^-\gamma$, at centre-of-mass energy below 3.5 pion masses. The process is embedded in the reaction $\pi^-\mathrm{Ni}\rightarrow\pi^-\gamma\;\mathrm{Ni}$, which is initiated by 190\,GeV pions impinging on a nickel target. The exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $Q^2<0.0015$\,(GeV/$c$)$^2$. From a sample of 63\,000 events the pion electric polarisability is determined to be $\alpha_\pi\ =\ (\,2.0\ \pm\ 0.6_{\mbox{\scriptsize stat}}\ \pm\ 0.7_{\mbox{\scriptsize syst}}\,) \times 10^{-4}\,\mbox{fm}^3$ under the …

Particle physicsChiral perturbation theoryPhotonComputerSystemsOrganization_COMPUTERSYSTEMIMPLEMENTATIONStrong interactionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONGeneral Physics and AstronomyFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMSGeneralLiterature_MISCELLANEOUSHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionPolarizabilityNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsChPTMuonCompton scatteringpolarisabilitypolarisability; ChPTComputingMethodologies_PATTERNRECOGNITIONHigh Energy Physics::ExperimentMagnetic dipoleParticle Physics - Experiment
researchProduct