0000000000928172

AUTHOR

Pierluigi Chiovaro

showing 60 related works from this author

On the improved current pulse method for the dynamic assessment of thermal diffusive properties

2009

Thermal condutctivity pebble bedSettore ING-IND/19 - Impianti Nucleari
researchProduct

Conceptual design of the main Ancillary Systems of the ITER Water Cooled Lithium Lead Test Blanket System

2021

Abstract The Water Cooled Lithium Lead Test Blanket System (WCLL TBS) is one of the EU Test Blanket Systems candidate for being installed and operated in ITER. In view of its Conceptual Design Review by F4E and ITER Organization (IO), planned for mid-September 2020, several technical activities have been performed in the areas of WCLL TBS Ancillary Systems design. In this article the outcomes of the conceptual design phase of the four main Ancillary Systems of WCLL TBS, namely the Water Cooling System (WCS), the Coolant Purification System (CPS), the PbLi loop and the Tritium Extraction System (TES), are reported and critically discussed. In particular, for each Ancillary System hereafter a…

Nuclear engineeringCPS; ITER; PbLi loop; TES; WCLL TBS; WCSchemistry.chemical_elementPbLi loopBlanket01 natural sciences010305 fluids & plasmasConceptual designITER0103 physical sciencesWater coolingGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringMechanical EngineeringWater cooledCoolantNuclear Energy and EngineeringchemistryEnvironmental scienceSystems designLithiumCPSWCSTESWCLL TBS
researchProduct

Implementazione ed utilizzo di simulatori semplificati “Desktop”

2011

Simulatori reattoriSettore ING-IND/19 - Impianti Nucleari
researchProduct

ANALYSES OF THE SPES-3 DESIGN AND BEYOND DESIGN ACCIDENT CONDITION BY USING TRACE CODE

2012

IRIS SPES-3 SMR TRACE Passive safety SystemSettore ING-IND/19 - Impianti Nucleari
researchProduct

Fattibilità di una diversa configurazione della facility SPES-3

2013

SPES-3Settore ING-IND/19 - Impianti Nucleari
researchProduct

Neutronic and photonic analysis of the water-cooled Pb17Li test blanket module for ITER-FEAT

2002

Abstract Within the European Fusion Technology Program, the Water-Cooled Lithium Lead (WCLL) DEMO breeding blanket line was selected in 1995 as one of the two EU lines to be developed in the next decade, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be implemented in ITER. This specific goal has been maintained also in ITER-FEAT program even if the general design parameters of the TBMs have reported some changes. This paper is focused on the investigation of the WCLL-TBM nuclear response in ITER-FEAT through detailed 3D-Monte Carlo neutronic and photonic analyses. A 3D heterogeneous model of the most recent design of the WCLL-TBM has been set-up simulating reali…

Structural materialMaterials sciencebusiness.industryNeutronicMechanical EngineeringWater cooledPower depositionNuclear engineeringPhotonicchemistry.chemical_elementFusion powerBlanketMonte Carlo methodNuclear physicsNuclear Energy and EngineeringchemistryNeutron sourceGeneral Materials ScienceLithiumBreeding blanketPhotonicsbusinessSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

First Flight Escape Probability and Uncollided Flux of Nuclear Particles in Convex Bodies with Spherical Symmetry

2016

This paper deals with the evaluation of the first flight escape probability of nuclear particles from convex bodies with spherical symmetry by means of some geometrical arguments and very simple probability considerations. The cases of a full sphere, a one-region spherical shell with an empty central zone, a spherical shell region containing a black central zone, and a full sphere with a sourceless shell have been considered. In all the aforementioned cases, a homogeneous medium and uniform isotropic source have been taken into account. Moreover, a simple and general formula has been derived for the calculation of the uncollided flux that is presupposed to be valid for arbitrary geometries.…

Physics020209 energyRegular polygonFlux02 engineering and technology01 natural sciences010305 fluids & plasmasClassical mechanicsNuclear Energy and EngineeringSimple (abstract algebra)0103 physical sciences0202 electrical engineering electronic engineering information engineeringFirst flight escape probability uncollided fluxCircular symmetrySettore ING-IND/19 - Impianti Nucleari
researchProduct

Analysis of a Generation 3+ Pressurised Water Reactor plant response to a postulated Station Black Out

2013

Station Black-out fission reactorsSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the influence of the supporting frame on the nuclear response of the Helium-Cooled Lithium Lead Test Blanket Module for ITER

2006

Abstract Within the European Fusion Technology Programme, very intense research activities have been promoted on the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept with the specific aim of manufacturing a Test Blanket Module (TBM) to be irradiated in ITER. HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a proper steel-supporting frame. In particular, since that frame has been designed to provide two cavities separated by a dividing plate and HCLL-TBM is foreseen to fill just one of them, its nuclear response could vary accordingly to the filling status of the other one, unless the dividing plate is thick enough to isolate the components housed …

Potential impactMaterials scienceMechanical EngineeringNuclear engineeringNeutronicMonte Carlo methodchemistry.chemical_elementBlanketFusion powerlaw.inventionNuclear interactionNuclear physicsNuclear Energy and EngineeringchemistrylawITERNuclear responseHCLL Test Blanket ModuleGeneral Materials ScienceSpark plugHeliumSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statistics
researchProduct

Optimization of the breeder zone cooling tubes of the DEMO Water-Cooled Lithium Lead breeding blanket

2016

Abstract The determination of an optimal configuration for the breeder zone (BZ) cooling tubes is one of the most important issues in the DEMO Water-Cooled Lithium Lead (WCLL) breeding blanket R&D activities, since BZ cooling tubes spatial distribution should ensure an efficient heat power removal from the breeder, avoiding hotspots occurrence in the thermal field. Within the framework of R&D activities supported by the HORIZON 2020 EUROfusion Consortium action on the DEMO WCLL breeding blanket design, a campaign of parametric analyses has been launched at the Department of Energy, Information Engineering and Mathematical Models of the University of Palermo (DEIM), in close cooperation with…

Steady stateMathematical modelDEMO reactor WCLL breeding blanket Breeder zone cooling tubesMechanical EngineeringNuclear engineeringchemistry.chemical_elementBlanket7. Clean energy01 natural sciencesFinite element method010305 fluids & plasmasBreeder (animal)Nuclear Energy and Engineeringchemistry0103 physical sciencesThermalEnvironmental scienceGeneral Materials ScienceLithium010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statisticsFusion Engineering and Design
researchProduct

Nuclear Analysis of an ITER Blanket Module

2013

ITER blanket system is the reactor’s plasma-facing component, it is mainly devoted to provide the thermal and nuclear shielding of the Vacuum Vessel and external ITER components, being intended also to act as plasma limiter. It consists of 440 individual modules which are located in the inboard, upper and outboard regions of the reactor. In this paper attention has been focused on to a single outboard blanket module located in the equatorial zone, whose nuclear response under irradiation has been investigated following a numerical approach based on the Monte Carlo method and adopting the MCNP5 code. The main features of this blanket module nuclear behaviour have been determined, paying part…

Nuclear and High Energy PhysicsNeutron transportMaterials sciencebusiness.industryNuclear engineeringNeutronics Blanket ITER Monte Carlo methodBlanketNuclear powerNuclear physicsNuclear Energy and EngineeringNeutron fluxElectromagnetic shieldingLimiterNuclear fusionNeutronbusinessSettore ING-IND/19 - Impianti Nucleari
researchProduct

Structural assessment of the EU-DEMO WCLL Central Outboard Blanket segment under normal and off-normal operating conditions

2021

Abstract Within the framework of the EUROfusion design activities concerning the EU-DEMO Breeding Blanket (BB) system, a research campaign has been carried out at the University of Palermo with the aim of investigating the structural behaviour of the DEMO Water-Cooled Lithium Lead (WCLL) Central Outboard Blanket (COB) segment. The assessment has been performed considering three different loading scenarios: the Normal Operation (NO), the Over-Pressurization (OP) and the Upward Vertical Displacement Event (VDE-up). In particular, NO scenario represents the loading case referring to the nominal operating conditions, whereas the OP scenario refers to the loading conditions due to an in-box LOCA…

business.industryDesign activitiesMechanical EngineeringFEM analysisStructural engineeringVDEBlanketPlasma volumeVertical motionFinite element methodWCLLNuclear Energy and EngineeringPlasma chamberGeneral Materials ScienceVertical displacementBreeding blanketbusinessDEMOGeologySettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringEvent (probability theory)
researchProduct

Parametric study of the influence of First Wall cooling water on the Water Cooled Lithium Lead Breeding Blanket nuclear response

2019

Abstract In the framework of EUROfusion Work Package International Cooperation R&D activities, a close collaboration has been started among University of Palermo, ENEA Brasimone and ENEA Frascati for the development of the Water Cooled Lithium Lead (WCLL) Breeding Blanket (BB) concept. In this context, a research campaign has been carried out at the University of Palermo in order to investigate the influence of First Wall (FW) cooling water configuration on the nuclear response of the WCLL BB under irradiation in EU-DEMO, in order to gain useful indications for the WCLL BB pre-conceptual designs. To this end, three-dimensional nuclear analyses have been performed by MCNP5 v. 1.6 Monte Carlo…

Work packageNuclear engineeringNeutronicchemistry.chemical_elementContext (language use)DEMO reactorBlanket7. Clean energy01 natural sciences010305 fluids & plasmas0103 physical sciencesWater coolingNeutronicsDEMO reactor; Neutronics; WCLL blanketGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statisticsbusiness.industryMechanical EngineeringWater cooledNuclear powerWCLL blanketNuclear Energy and EngineeringchemistryEnvironmental scienceLithiumbusiness
researchProduct

On the thermo-mechanical behaviour of DEMO water-cooled lithium lead equatorial outboard blanket module

2017

Abstract Within the framework of EUROfusion R&D activities an intense research campaign has been carried out at the University of Palermo, in close cooperation with ENEA Brasimone, in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead breeding blanket (WCLL). In particular, attention has been paid to the most recent geometric configuration of the DEMO WCLL outboard equatorial module, as designed by WCLL project team during 2015, endowed with an attachment system based on the use of radial pins, purposely outlined to connect the module back-plate to its back-supporting structure, that have been properly considered to simulate more realistically the …

Computer scienceMechanical EngineeringWater cooledGeometric configurationDEMO reactor WCLL blanket Lithium-lead Thermo-mechanicsMechanical engineeringBlanket01 natural sciencesFinite element method010305 fluids & plasmasNuclear Energy and EngineeringCabin pressurizationLinearization0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariThermo mechanicalCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Validazione e Verifica (V&V) di CATHARE2 e TRACE sul Programma Sperimentale SPES-2

2014

TRACECATHARESettore ING-IND/19 - Impianti Nucleari
researchProduct

Modifiche del Codice RELAP5 per lo Studio delle Perdite di Carico in Generatori di Vapore a Tubi Elicoidali Interessati da Flussi Bifase

2010

RELAP5Settore ING-IND/19 - Impianti Nucleari
researchProduct

TRACE input model for SPES3 facility

2010

TRACESettore ING-IND/19 - Impianti Nucleari
researchProduct

A Monte Carlo study on the possible lay-out influence in the HCLL-TBM nuclear response

2008

HCLL-TBM NeutronicsSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the optimization of the first wall of the DEMO water-cooled lithium lead outboard breeding blanket equatorial module

2016

Abstract Within the framework of EUROfusion R&D activities a research campaign has been carried out at the University of Palermo in order to investigate the thermo-mechanical performances of the DEMO water-cooled lithium lead (WCLL) breeding blanket first wall (FW). The research campaign has been mainly focused on the optimization of the FW geometric configuration in order to maximize the heat flux it may safely withstand fulfilling all the thermal, hydraulic and mechanical requirements foreseen by safety codes. Attention has been focused on the FW flat concept endowed with square cooling channels and the potential influence of its four main geometrical parameters on its thermo-mechanical p…

Steady stateComputer scienceMechanical EngineeringNuclear engineeringchemistry.chemical_elementBlanket01 natural sciences7. Clean energyFinite element methodSquare (algebra)010305 fluids & plasmasDEMO reactor WCLL blanket First wallNuclear Energy and EngineeringHeat fluxchemistry0103 physical sciencesThermalGeneral Materials ScienceLithium010306 general physicsLead (electronics)Settore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Assessment of the Thermo-mechanical Performances of a DEMO Water-Cooled Liquid Metal Blanket Module

2015

Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA-Brasimone, CEA-Saclay and the University of Palermo to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket, both under normal operation and over-pressurization steady state scenarios. The research campaign has been carried out following a theoretical-computational approach based on the finite element method (FEM) and adopting a qualified commercial FEM code. In particular, two different three-dimensional FEM models of the WCLL blanket module have been set-up to be used for normal operation and over-pressurization a…

Liquid metalNuclear and High Energy PhysicsMaterials science[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear engineeringDEMO reactorBlanket[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyThermo-mechanics;DEMO reactor;WCLL blanket010305 fluids & plasmasBreeder (animal)0103 physical sciencesThermal010306 general physicsSettore ING-IND/19 - Impianti NucleariSteady stateToroidThermo-mechanicsThermo-mechanic6. Clean waterFinite element methodCoolantWCLL blanketNuclear Energy and Engineering
researchProduct

Investigation of the DEMO WCLL Breeding Blanket Cooling Water Activation

2020

Abstract Within the framework of the activities foreseen by the EUROfusion action on the cooling water activation assessment for a DEMO reactor equipped with a Water Cooled Lithium Lead Breeding Blanket (WCLL BB), the University of Palermo is involved in the assessment of dose rates induced by the decay of nitrogen radioisotopes produced by water activation, nearby the main components (e.g. isolation valves) of both First Wall (FW) and Breeder Zone (BZ) cooling circuits. In particular, the aim of this work is to evaluate the spatial distribution of nitrogen isotopes (16N and 17N) in the WCLL BB cooling circuits. To this purpose, a coupled neutronic/fluid-dynamic problem is solved following …

Neutron transportMechanical EngineeringNuclear engineeringFlow (psychology)Isolation valveDEMO reactorBlanket01 natural sciences010305 fluids & plasmas010101 applied mathematicsNitrogen RadioisotopesBreeder (animal)Nuclear Energy and Engineering0103 physical sciencesHeat transferWater coolingNeutronicsEnvironmental scienceGeneral Materials ScienceWCLL BlanketFluid-dynamics0101 mathematicsSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project

2019

The water-cooled lithium-lead breeding blanket is in the pre-conceptual design phase. It is a candidate option for European DEMO nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium-lead as breeder-multiplier, pressurized water as coolant and EUROFER as structural material. Current design is based on DEMO 2017 specifications. Two separate water systems are in charge of cooling the first wall and the breeding zone: thermo-dynamic cycle is 295–328 °C at 15.5 MPa. The breeder enters and exits from the breeding zone at 330 °C. Cornerstones of the design are the single module segment approach and the water manifold between the breeding blanket box and the back suppo…

Breeding blanket; DEMO; EUROfusion; WCLLWCLL; breeding blanket; DEMO; EUROfusionComputer scienceNuclear engineeringBlanket01 natural sciences010305 fluids & plasmaslaw.inventionBreeder (animal)Conceptual designlaw0103 physical sciencesGeneral Materials ScienceEUROfusion010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringMechanical EngineeringPressurized water reactorFusion powerCoolantWCLLDesign phaseNuclear Energy and EngineeringMaterials Science (all)Breeding blanketBreeding blanket; DEMO; EUROfusion; WCLL; Civil and Structural Engineering; Nuclear Energy and Engineering; Materials Science (all); Mechanical Engineering
researchProduct

Study of the helium-cooled lithium lead test blanket module nuclear behaviour under irradiation in ITER

2009

Abstract The present paper deals with the detailed investigation of the helium-cooled lithium lead test blanket module (HCLL-TBM) nuclear behaviour under irradiation in ITER, carried out at the Department of Nuclear Engineering of the University of Palermo adopting a numerical approach based on the Monte Carlo method. A realistic 3D heterogeneous model of the HCLL-TBM was set-up and inserted into an ITER 3D semi-heterogeneous model that realistically simulates the reactor lay-out up to the cryostat. A Gaussian-shaped neutron source was adopted for the calculations. The main features of the HCLL-TBM nuclear response were assessed, paying a particular attention to the neutronic and photonic d…

CryostatNeutron transportTokamakMaterials scienceMechanical EngineeringNuclear engineeringchemistry.chemical_elementFusion powerBlanketHCLL test blanket module Neutronics Monte Carlo methodlaw.inventionNuclear physicsNuclear Energy and EngineeringchemistrylawNeutron sourceGeneral Materials ScienceLithiumSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Analisi Mediante Il Codice TRACE Delle Principali Fenomenologie Caratterizzanti Il Transitorio Conseguente Ad Una Rottura A Ghigliottina Nella Linea …

2011

SPES-3Settore ING-IND/19 - Impianti NucleariDVI break
researchProduct

Numerical assessment of the thermomechanical behaviour of the DEMO Water-Cooled Lithium Lead inboard blanket equatorial module

2018

Abstract Within the framework of EUROfusion R&D activity, a research campaign has been carried out at the University of Palermo, in close cooperation with ENEA labs, in order to assess the thermo-mechanical performances of the DEMO Water-Cooled Lithium Lead (WCLL) inboard blanket equatorial module, whether properly integrated within its whole inboard segment. In particular, a detailed 3D model of this segment, including all the other modules, the back-supporting structure and the attachment system, has been considered in order to realistically simulate the boundary conditions affecting the equatorial module behaviour. The study has been focused on the investigation of the module thermo-mech…

Structural materialComputer scienceMechanical EngineeringNuclear engineeringThermo-mechanicBlanket01 natural sciencesFinite element method010305 fluids & plasmasStress (mechanics)WCLL blanketNuclear Energy and EngineeringCabin pressurizationLinearization0103 physical sciencesGeneral Materials ScienceMaterials Science (all)Boundary value problem010306 general physicsDEMOFEM analysiLoss-of-coolant accidentSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

On the nuclear response of the helium-cooled lithium lead test blanket module in ITER

2005

Abstract The helium-cooled lithium lead (HCLL) concept has been recently selected as one of the two European reference designs foreseen for the breeding blanket of a demonstration fusion reactor. In particular, within the framework of the research and development activities on this blanket line, an HCLL test blanket module (TBM) has to be designed and manufactured to be implemented in ITER. At the Department of Nuclear Engineering (DIN) of the University of Palermo, a research campaign has been carried out to investigate the nuclear response of HCLL-TBM inside ITER by a numerical approach based on the Monte Carlo method. A realistic 3D heterogeneous model of HCLL-TBM has been set-up and ins…

CryostatMaterials scienceMechanical EngineeringNuclear engineeringMonte Carlo methodchemistry.chemical_elementBlanketFusion powerNuclear Energy and EngineeringchemistryTest blanket moduleHCLL-blanketNeutronicsRadiation damageNeutron sourceGeneral Materials ScienceLithiumSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Validation of Multi-Physics Integrated Procedure for the HCPB Breeding Blanket

2019

The wide range of requirements and constraints involved in the design of nuclear components for fusion reactors makes the development of multi-physics analysis procedures of utmost importance. In the framework of the European DEMO project, the Karlsruhe Institute of Technology (KIT) is dedicating several efforts to the development of a multi-physics analysis tool allowing the characterization of breeding blanket design points which are consistent from the neutronic, thermal-hydraulic and thermal-mechanical points of view. In particular, a procedure developed at KIT is characterized by the implementation of analysis software only. A preliminary step for the validation of such a procedure ha…

Technologybreeding blanketHCPBDEMO reactorBlanketFusion power7. Clean energy01 natural sciences010305 fluids & plasmasComputational Mathematics0103 physical sciencesComputer Science (miscellaneous)Systems engineeringdesign pointmulti-physicscoupling010306 general physicsddc:600Settore ING-IND/19 - Impianti Nucleari
researchProduct

Multi-Module vs. Single-Module concept: Comparison of thermomechanical performances for the DEMO Water-Cooled Lithium Lead breeding blanket

2018

Abstract Within the framework of EUROfusion R&D activity an intense research campaign has been performed at the University of Palermo, in close cooperation with ENEA labs and KIT, in order to compare the thermomechanical performances of the Back Supporting Structure (BSS) of Multi-Module and Single-Module concepts of DEMO Water-Cooled Lithium Lead breeding blanket (WCLL). To this purpose, detailed 3D models of the DEMO WCLL right inboard and central outboard segments, including detailed BSS and simplified First Wall and structures according to the two concepts, have been set-up. The study has been performed considering the Normal Operation and Central Major Disruption steady state loading s…

Materials sciencechemistry.chemical_elementBlanket01 natural sciencesThermomechanic010305 fluids & plasmasStress (mechanics)Linearization0103 physical sciencesForensic engineeringGeneral Materials Science010306 general physicsDEMOFEM analysiSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringSteady stateStructural materialbusiness.industryMechanical EngineeringWater cooledStructural engineeringMMSFinite element methodWCLLNuclear Energy and EngineeringchemistrySMSLithiumBreeding blanketMaterials Science (all)businessFusion Engineering and Design
researchProduct

Sul numero delle disposizioni delle N parti dell'intero M nel caso in cui nessuna delle parti possa essere superiore a Q

2010

calcolo combinatorio MOnte CarloSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the effects of the supporting frame on the radiation-induced damage of HCLL-TBM structural material

2007

Within the European Fusion Technology Programme, research activities have been conducted on the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept with the aim of manufacturing a Test Blanket Module (TBM) to be irradiated in ITER. HCLL-TBM is planned to be located in an ITER equatorial port, housed inside an AISI 316 stainless steel-supporting frame. Since that frame has been designed to provide two positions separated by a dividing plate and the HCLL-TBM is expected to fill one of them, its nuclear response could vary depending on the filling status of the other position and on the plate thickness. A parametric study has been carried out to investigate the potential effects on the …

Nuclear and High Energy PhysicsStructural materialMaterials scienceNuclear engineeringRadiation inducedBlanketFusion powerlaw.inventionNuclear Energy and EngineeringlawGeneral Materials ScienceTEST BLANKET MODULE NUCLEAR RESPONSE ITERSpark plugSettore ING-IND/19 - Impianti NucleariNuclear chemistry
researchProduct

On the numerical assessment of the thermo-mechanical performances of the DEMO Helium-Cooled Pebble Bed breeding blanket module

2014

Within the framework of the European DEMO Breeder Blanket Programme, a research campaign has been launched by University of Palermo, ENEA-Brasimone and Karlsruhe Institute of Technology to theoretically investigate the thermo-mechanical behavior of the Helium-Cooled Pebble Bed (HCPB) breeding blanket module of the DEMO1 blanket vertical segment, under normal operation and over-pressurization loading scenarios. The research campaign has been carried out following a theoretical-computational approach based on the finite element method (FEM) and adopting a qualified commercial FEM code. A realistic 3D FEM model of the HCPB blanket module central poloidal-radial region has been developed, inclu…

ToroidSteady stateThermo-mechanicsMechanical EngineeringNuclear engineeringHCBP blanketThermo-mechanicchemistry.chemical_elementDEMO reactorThermo-mechanics;DEMO reactor;HCBP blanketBlanketFinite element methodCoolantBreeder (animal)Nuclear Energy and EngineeringchemistryThermalDEMO reactor HCBP blanket Thermo-mechanicsEnvironmental scienceGeneral Materials ScienceSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural Engineering
researchProduct

Modifiche del codice RELAP5/MOD3.2.b per lo studio delle perdite di carico e dello scambio termico in condotti elicoidali interessati da deflussi bif…

2011

L’attività di ricerca svolta nell’ambito della linea progettuale LP2-B.2 del programma PAR 2008-09 (CERSE III) ha visto una prima fase in cui è stato ulteriormente sviluppato il lavoro svolto nel corso dei precedenti programmi CERSE [1, 2], riguardante la validazione del codice termoidraulico avanzato Relap5/Mod3.2.b, modificato per il calcolo delle cadute di pressione in tubi elicoidali interessati da deflussi monofase e bifase, ed una seconda fase che ha comportato l’implementazione di nuove procedure valide per lo studio dello scambio termico bifase in condotti elicoidali, in aggiunta a quelle relative al solo scambio termico monofase, in precedenza implementate. Per quanto riguarda ques…

Relap5/mod3.2b generation iv LFR condotti elicoidali deflussi bifaseSettore ING-IND/19 - Impianti Nucleari
researchProduct

Assessment of the Possible Lay-Out Influence on the HCLL-TBM Nuclear Response

2009

The Department of Nuclear Engineering of the University of Palermo (DIN) was involved, since several years, in the study of the nuclear response of the helium-cooled lithium lead (HCLL) test blanket module (TBM) which will be tested in ITER. In this framework a research campaign was performed, at the DIN, to asses the nuclear response of the TBM in a toroidal lay-out, with the specific aim to investigate the possible lay-out influence on the module nuclear behaviour by comparing the results obtained with those presented in a similar previous work focussed on the most recent design of the poloidal HCLL-TBM. A computational approach based on the Monte Carlo method was followed and a realistic…

PhysicsHCLL-blanket Test blanket module Neutronics Monte Carlo methodNuclear and High Energy PhysicsNeutron transportTokamakNuclear engineeringMonte Carlo methodBlanketFusion powerlaw.inventionNuclear physicsNuclear Energy and EngineeringlawNuclear fusionNeutronTritiumSettore ING-IND/19 - Impianti NucleariJournal of Fusion Energy
researchProduct

A study of the potential influence of frame coolant distribution on the radiation-induced damage of HCLL-TBM structural material

2008

Abstract Within the European Fusion Technology Programme, the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept is one of the two EU lines to be developed for a Long Term fusion reactor, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be implemented in ITER. The HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a steel-supporting frame, actively cooled by pressurized water. That supporting frame has been designed to house two different TBMs, providing two cavities separated by a dividing Plate 20 cm thick. As the nuclear response of HCLL-TBM might vary accordingly to the supporting frame configuration and composition, at t…

CryostatNeutron transportMaterials scienceMechanical EngineeringNuclear engineeringFrame (networking)Fusion powerBlanketCoolantNuclear Energy and EngineeringNeutron sourceGeneral Materials ScienceLithium-lead blanket TBM NeutronicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statisticsFusion Engineering and Design
researchProduct

Thermal–mechanical and thermal–hydraulic integrated study of the Helium-Cooled Lithium Lead Test Blanket Module

2010

Abstract The Helium-Cooled Lithium Lead Test Blanket Module (HCLL-TBM) is one of the two TBM to be installed in an ITER equatorial port since day 1 of operation, with the specific aim to investigate the main concept functionalities and issues such as high efficiency helium cooling, resistance to thermo-mechanical stresses, manufacturing techniques, as well as tritium transport, magneto-hydrodynamics effects and corrosion. In particular, in order to show a DEMO-relevant thermo-mechanical and thermal–hydraulic behavior, the HCLL-TBM has to meet several requirements especially as far as its coolant thermofluid-dynamic conditions and its thermal–mechanical field are concerned. The present paper…

Materials scienceConvective heat transferMechanical EngineeringNuclear engineeringHCLL TBM Thermal-mechanical analysesThermal contactBlanketThermal conductionCoolantThermal hydraulicsNuclear Energy and EngineeringHeat fluxHeat transferGeneral Materials ScienceSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Multiphysics Optimization for First Wall Design Enhancement in Water-Cooled Breeding Blankets

2021

Abstract The commercial feasibility of the first fusion power plant generation adopting D-T plasma is strongly dependent upon the self-sustainability in terms of tritium fuelling. Within such a kind of reactor, the component selected to house the tritium breeding reactions is the breeding blanket, which is further assigned to heat power removal and radiation shielding functions. As a consequence of both its role and position, the breeding blanket is heavily exposed to both surface and volumetric heat loads and, hence, its design requires a typical multiphysics approach, from the neutronics to the thermo-mechanics. During last years, a great deal of effort has been put in the optimization of…

OptimizationNuclear and High Energy PhysicsNeutron transportBreeding blanket Complex method Multiphysics Neutronics Optimization ThermomechanicsComputer scienceMaterials Science (miscellaneous)Water cooledMultiphysicsNuclear engineeringMultiphysicsTK9001-9401Structural integrityMaximizationBlanketFusion powerComplex methodThermomechanicsNuclear Energy and EngineeringComponent (UML)NeutronicsNuclear engineering. Atomic powerBreeding blanketSettore ING-IND/19 - Impianti Nucleari
researchProduct

Education and Research in Nuclear Engineering and Radiological Protection at Nuclear Engineering Department of Palermo University

2010

Education Research Nuclear Engineering Radiological Protection Palermo UniversitySettore ING-IND/19 - Impianti Nucleari
researchProduct

A multi-physics integrated approach to breeding blanket modelling and design

2019

Abstract Often, for the design of a component, several kinds of analyses are needed. Even more frequently, the different fields of study, to be taken into account for the design verification, have to be examined minutely until the final results are satisfying. Furthermore, when geometry modifications are required, for instance to fulfill the component functions, the analyses cycle has to be restarted and an iterative process has to be carried out. This procedure may be time-consuming and herald of errors, in particular if it is demanded to the human activity. Therefore, it is more convenient for the scientific community to adopt a numerical tool that can combine various computational codes.…

Multi-physicCommercial softwareNeutron transportIterative and incremental developmentHCPBMechanical EngineeringBase (geometry)Blanket7. Clean energy01 natural sciencesWCLL010305 fluids & plasmasCouplingLead (geology)Nuclear Energy and EngineeringCoupling (computer programming)Component (UML)0103 physical sciencesSystems engineeringGeneral Materials ScienceBreeding blanket010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Adeguamento dello SPES2 per Prove di Sicurezza. Analisi Preliminari per La Simulazione di un Incidente Tipo Fukushima su SPES-2

2012

SPES2Settore ING-IND/19 - Impianti Nucleari
researchProduct

Probabilità di fuga di "particelle" nucleari da corpi a simmetria sferica

2008

neutronica monte carloSettore ING-IND/19 - Impianti Nucleari
researchProduct

A Training Experience of Operators with the AGN-201 “Costanza” Research Reactor of Palermo University

2011

The nuclear reactor AGN-201 named “Costanza”, installed at the Nuclear Engineering Section of the Department of Energy of the University of Palermo, is a “zero power” research reactor designed to be mainly used for education purposes as well as for research applications, such as activation analysis and irradiation tests, and last, but not the least, for radionuclide production to be used in nuclear medical applications. Due to its intrinsic safety and low margin of reactivity (less than 350 p.c.m.) so as to the absence of start-up and shut-down time limits, it represents a useful training tool for operators, too. This paper reports some of the activities carried out within the framework of …

Settore ING-IND/20 - Misure E Strumentazione NucleariTraining AGN-201 nuclear research reactorSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the AGN - 201 "COSTANZA" Research Reactor at the Department of Nuclear Engineering of the University of Palermo

2005

researchProduct

Assessment of the importance of neutron multiplication for tritium production

2016

Abstract One of the major requirements for a fusion power plant in the future is tritium self-sufficiency. For this reason the scientific community has dedicated a lot of effort to research activity on reactor tritium breeding blankets. In the framework of the international project DEMO, many concepts of breeding blanket have been taken into account and some of them will be tested in the experimental reactor ITER by means of appropriate test blanket modules (TBMs). All the breeding blanket concepts rely on the adoption of binary systems composed of a material acting as neutronic multiplier and another as a breeder. This paper addresses a neutronic feature of these kinds of systems. In parti…

tritium breeding blanket neutronicsNuclear and High Energy PhysicsComputer scienceNuclear engineeringBlanketFusion powerCondensed Matter Physics01 natural sciences010305 fluids & plasmasNuclear physics0103 physical sciencesModel setNeutron multiplicationNeutronTritium010306 general physicsSettore ING-IND/19 - Impianti NucleariNuclear Fusion
researchProduct

Analysis of the SPES-3 direct vessel injection line break by using TRACE code

2011

TRACE Code thermal-hydraulicsSettore ING-IND/19 - Impianti Nucleari
researchProduct

On the adoption of the Monte Carlo method to solve one-dimensional steady state thermal diffusion problems for non-uniform solids

2013

Abstract The present paper is focussed on the investigation of the potential adoption of the Monte Carlo method to solve one-dimensional, steady state, thermal diffusion problems for continuous solids characterised by an isotropic, space-dependent conductivity tensor and subjected to non-uniform heat power deposition. To this purpose the steady state form of Fourier’s heat diffusion equation relevant to a continuous, heterogeneous and isotropic solid, undergoing a space-dependent heat power density has been solved in a closed analytical form for the general case of Cauchy’s boundary conditions. The thermal field obtained has been, then, put in a peculiar functional form, indicating that it …

Materials scienceApplied MathematicsQuantum Monte CarloMonte Carlo methodThermal diffusivityModeling and SimulationIsotropic solidDynamic Monte Carlo methodMonte Carlo method Heat diffusion Space-dependent thermal conductivityDiffusion Monte CarloHeat equationStatistical physicsSettore ING-IND/19 - Impianti NucleariMonte Carlo molecular modeling
researchProduct

Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditi…

2015

Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical-computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal-radial slices of the WCLL blanket module, have been set up. A particular attent…

Materials scienceDEMO reactor WCLL blanket Thermo-mechanicsaWater flowNuclear engineeringchemistry.chemical_elementDEMO reactorBlanket01 natural sciences010305 fluids & plasmas[SPI]Engineering Sciences [physics]Breeder (animal)0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringWCLL blanket;Thermo-mechanics;DEMO reactorSteady stateThermo-mechanicsMechanical EngineeringWater cooledThermo-mechanicFinite element methodWCLL blanketNuclear Energy and EngineeringchemistryLithiumThermo mechanicalFusion Engineering and Design
researchProduct

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code

2014

The present paper deals with the investigation of the evolution and consequences of a Station Black-Out (SBO) initiating event transient in the SPES3 facility [1]. This facility is an integral simulator of a small modular reactor being built at the SIET laboratories, in the framework of the R&D program on nuclear fission funded by the Italian Ministry of Economic Development and led by ENEA. The SBO transient will be simulated by using the RELAP5 and TRACE nodalizations of the SPES3 facility. Moreover, the analysis will contribute to study the differences on the code predictions considering the different modelling approach with one and/or three-dimensional components and to compare the capa…

HistoryEngineeringRELAP5business.industryEvent (computing)Nuclear engineeringNuclear fissionTRACESMRNuclear reactors -- Models -- ItalyComputer Science ApplicationsEducationSmall modular reactorNuclear fissionNuclear reactors -- Safety measuresCode (cryptography)Black outChristian ministryTransient (computer programming)businessSettore ING-IND/19 - Impianti NucleariSimulationTRACE (psycholinguistics)Journal of Physics: Conference Series
researchProduct

Integrated design of breeding blanket and ancillary systems related to the use of helium or water as a coolant and impact on the overall plant design

2021

Currently, for the EU DEMO, two Breeding Blankets (BBs) have been selected as potential candidates for the integration in the reactor. They are the Water Cooled Lithium Lead and the Helium Cooled Pebble Bed BB concepts. The two BB variants together with the associated ancillary systems drive the design of the overall plant. Therefore, a holistic investigation of integration issues derived by the BB and the installation of its ancillary systems has been performed. The issues related to the water activation due to the 16N and 17N isotopes and the impact on the primary heat transfer systems have been investigated providing guidelines and dedicated solution for the integration of safety devices…

TechnologyNuclear engineeringintegration issuesBreeding blanket; Integration issues; Water activation; Tritium management; VVPSSchemistry.chemical_elementIsolation valveSystem safetyBlanketTritium01 natural sciences010305 fluids & plasmasVVPSS0103 physical sciencesFusion reactors -- Design and constructionGeneral Materials Science010306 general physicswater activationSettore ING-IND/19 - Impianti NucleariHeliumCivil and Structural EngineeringIntegrated designbreeding blanket; integration issues; tritium management; VVPSS; water activationbreeding blanketMechanical EngineeringWater -- Thermal propertiesCoolanttritium managementNuclear Energy and EngineeringchemistryHeat transferEnvironmental scienceHelium -- Thermal propertiesPlant designddc:600Power-plants -- Design and construction
researchProduct

Progress of the conceptual design of the European DEMO breeding blanket, tritium extraction and coolant purification systems

2020

Abstract In the frame of the EUROfusion consortium activities the Helium Cooled Pebble Bed (HCPB) and the Water Cooled Lithium Lead (WCLL) concepts are being developed as possible candidates to become driver Breeding Blanket (BB) for the EU DEMO, which aims at the tritium self-sufficiency and net electricity production. The two BB design options encompass water or helium as coolants and solid ceramic with beryllium/beryllides or PbLi as tritium breeder and neutron multipliers. The BB segments have evolved towards a more stable conceptual design taking into account multiple feasibility aspects and requirements imposed by interfacing systems. Possible solutions to improve shielding capabiliti…

TokamakTritium extraction and removalNuclear engineeringchemistry.chemical_elementIsolation valveBlanket7. Clean energy01 natural sciences010305 fluids & plasmaslaw.inventionBreeder (animal)Conceptual designlaw0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringMechanical EngineeringCoolant purificationCoolantElectricity generationNuclear Energy and EngineeringchemistryEnvironmental scienceBreeding blanketBeryllium
researchProduct

A neutron point kinetic model for fusion relevant calculations

2012

Abstract In the framework of research activities on fusion reactors a great effort is dedicated by the scientific community to the development of tritium breeding blankets. One of the main goals is to assess the neutronic behaviour of such devices to analyse their tritium breeding performance and to evaluate the required data for their thermal–mechanic and thermal–hydraulic design. Many papers have been published on this topic considering some stationary condition to calculate such important quantities as heating power, gas production and dpa rates, tritium breeding ratio, etc., but not much attention has been focussed to neutronic transport analyses in transient conditions. The present pap…

Neutron transportComputer scienceMechanical EngineeringNuclear engineeringNumerical analysisMonte Carlo methodNeutron kinetic Blanket HCLL-TBMBlanketFusion powerNuclear physicsNuclear Energy and EngineeringGeneral Materials SciencePoint (geometry)NeutronTransient (oscillation)Settore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Development and application of an alternative modelling approach for the thermo-mechanical analysis of a DEMO water-cooled lithium lead breeding blan…

2022

In the frame of the EUROfusion research activities devoted to the design of the DEMO breeding blanket (BB), the Water-Cooled Lithium-Lead BB (WCLL) concept is one of the candidates currently assessed in EU. To this end, an intense research campaign is ongoing to develop a robust geometric configuration for the WCLL BB Central Outboard Segment (COB). Since the current reference design of the WCLL COB segment is not mature enough to allow a full thermal-hydraulic assessment, an alternative procedure aimed at obtaining a thermal field for the whole segment without performing its complete thermal-hydraulic analysis is presented and applied in this work. The scope of the work is to obtain a ther…

Analysis procedureNuclear Energy and EngineeringThermo-mechanicsMechanical EngineeringCOB segmentGeneral Materials Sciencesecondary stressWCLL BBSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Una variante del problema dell'ago di Buffon e verifica con il metodo Monte Carlo

2009

statistica Monte CarloSettore ING-IND/19 - Impianti Nucleari
researchProduct

Structural analysis of the back supporting structure of the DEMO WCLL outboard blanket

2017

Abstract Within the framework of EUROfusion R&D activities an intense research campaign has been carried out at the University of Palermo, in close cooperation with ENEA Brasimone, in order to investigate the thermo-mechanical performances of the outboard segment Back-Supporting Structure (BSS) of the DEMO Water-Cooled Lithium Lead breeding blanket (WCLL). In particular, the configuration of the outboard segment BSS, purposely set-up by the WCLL project team during 2015 according to the blanket “multi-module system” concept, has been taken into account in order to study its steady state thermo-mechanical behaviour, paying attention to the simulation of both modules-BSS and BSS-vacuum vessel…

Structure (mathematical logic)business.industryComputer scienceMechanical EngineeringDEMO reactor WCLL blanket BSSDEMO reactorStructural engineeringBlanket01 natural sciencesProject teamFinite element method010305 fluids & plasmasWCLL blanketGeometric designNuclear Energy and EngineeringLinearization0103 physical sciencesSafety criteriaGeneral Materials Science010306 general physicsbusinessBSSSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Applicazione del metodo Monte Carlo a problemi monodimensionali di conduzione termica stazionaria in sistemi con conducibilità dipendente dalla posiz…

2010

Metodo MonteCarlo Diffusione termicaSettore ING-IND/19 - Impianti Nucleari
researchProduct

Feasibility of D-D start-up under realistic technological assumptions for EU-DEMO

2021

Abstract One of the main issues in view of the realization of a DEMOnstration fusion reactor is the availability of a sufficient external supply of tritium (T) to start operation. T is an unstable nuclide, which is almost absent in nature and is currently available as by-product in e.g. CANDU, whose operation in the next decades (both in terms of life extension of existing reactors and construction of new ones) is at the moment under debate. During DEMO operation, T will be generated on-site by breeding blanket, employing the neutrons originating from D-T reaction. However, it is considered that a certain initial amount of T is needed to start operation, the so-called start-up inventory. An…

Power stationComputer scienceMechanical EngineeringNuclear engineeringFusion powerBlanketStart up7. Clean energy01 natural sciences010305 fluids & plasmasMoment (mathematics)Nuclear Energy and Engineering0103 physical sciencesGeneral Materials ScienceNuclide010306 general physicsRealization (systems)Order of magnitudeCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Assessment of DEMO WCLL breeding blanket primary heat transfer system isolation valve absorbed doses due to activated water

2020

Abstract Within the framework of the activities foreseen by the EUROfusion action on the cooling water activation assessment for a DEMO reactor equipped with a Water Cooled Lithium Lead Breeding Blanket (WCLL BB), the University of Palermo is involved in the investigation of the absorbed dose induced by the decay of nitrogen radioisotopes produced by water activation, in the main components (e.g. isolation valves) of both First Wall (FW) and Breeder Zone (BZ) cooling circuits. The aim of this work is to assess the spatial distribution of the absorbed dose in the DEMO Upper Pipe Chase (UPC), focusing the attention on the space neighbouring a typical isolation valve of the Primary Heat Transf…

PipingMechanical EngineeringWater cooledNuclear engineeringIsolation valveBlanket01 natural sciences010305 fluids & plasmasWCLL blanketBreeder (animal)Nuclear Energy and EngineeringDoseAbsorbed dose0103 physical sciencesHeat transferNeutronicsWater coolingEnvironmental scienceGeneral Materials Science010306 general physicsDEMOSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

Studies on the AGN - 201 "COSTANZA" Research Reactor

2007

researchProduct

A study of the potential influence of frame coolant on HCLL-TBM nuclear response

2007

Abstract Within the European Fusion Technology Programme, the Helium-Cooled Lithium Lead (HCLL) breeding blanket concept is one of the two EU lines to be developed for a long term fusion reactor, in particular with the aim of manufacturing a test blanket module (TBM) to be implemented in ITER. The HCLL-TBM is foreseen to be located in an ITER equatorial port, being housed inside a steel-supporting frame, actively cooled by pressurized water. This supporting frame has been designed to house two different TBMs providing two cavities separated by a dividing plate 20 cm thick. As the nuclear response of HCLL-TBM could vary with the supporting frame configuration and composition, a parametric st…

PhysicsCryostatToroidMechanical EngineeringNuclear engineeringNeutronicFrame (networking)HCLL-TBMBlanketFusion powerCoolantNuclear physicsMonte Carlo methodNuclear Energy and EngineeringITERNeutron sourceGeneral Materials ScienceSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringParametric statistics
researchProduct

On the nuclear response of the water-cooled Pb-17Li test blanket module for ITER-FEAT

2003

Abstract Within the European Fusion Technology Programme, the Water-Cooled Lithium Lead (WCLL) DEMO breeding blanket line was selected in 1995 as one of the two EU lines to be developed in the next decades, in particular with the aim of manufacturing a Test Blanket Module (TBM) to be tested in ITER-FEAT. The present paper is focused on the study of the WCLL-TBM nuclear response in ITER-FEAT, being specifically oriented to the investigation of the local effects due to the typical C-shaped tubes of the breeder zone, since they could play a pivotal role in the module-relevant thermo–mechanical design. A 3D heterogeneous model of the WCLL-TBM, realistically simulating its new lay out and taking…

Structural materialMechanical EngineeringWater cooledNuclear engineeringchemistry.chemical_elementBlanketFusion powerCluster (spacecraft)ITER-FEATNuclear physicsBreeder (animal)Nuclear Energy and EngineeringchemistryEnvironmental scienceNeutron sourceGeneral Materials ScienceLithiumBlanket modulePb/17LiSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Analisi Incidentali Deterministiche e Utilizzo di Simulatori di Impianto a Supporto delle Verifiche di Sicurezza. Sviluppo e Messa a Punto di un Mode…

2012

PWRTRACEEPRSettore ING-IND/19 - Impianti Nucleari
researchProduct