0000000000928214

AUTHOR

Santi Spadaro

A note on rank 2 diagonals

<p>We solve two questions regarding spaces with a (G<sub>δ</sub>)-diagonal of rank 2. One is a question of Basile, Bella and Ridderbos about weakly Lindelöf spaces with a G<sub>δ</sub>-diagonal of rank 2 and the other is a question of Arhangel’skii and Bella asking whether every space with a diagonal of rank 2 and cellularity continuum has cardinality at most continuum.</p>

research product

On two topological cardinal invariants of an order-theoretic flavour

Noetherian type and Noetherian $\pi$-type are two cardinal functions which were introduced by Peregudov in 1997, capturing some properties studied earlier by the Russian School. Their behavior has been shown to be akin to that of the \emph{cellularity}, that is the supremum of the sizes of pairwise disjoint non-empty open sets in a topological space. Building on that analogy, we study the Noetherian $\pi$-type of $\kappa$-Suslin Lines, and we are able to determine it for every $\kappa$ up to the first singular cardinal. We then prove a consequence of Chang's Conjecture for $\aleph_\omega$ regarding the Noetherian type of countably supported box products which generalizes a result of Lajos S…

research product

Covering by discrete and closed discrete sets.

Say that a cardinal number $\kappa$ is \emph{small} relative to the space $X$ if $\kappa <\Delta(X)$, where $\Delta(X)$ is the least cardinality of a non-empty open set in $X$. We prove that no Baire metric space can be covered by a small number of discrete sets, and give some generalizations. We show a ZFC example of a regular Baire $\sigma$-space and a consistent example of a normal Baire Moore space which can be covered by a small number of discrete sets. We finish with some remarks on linearly ordered spaces.

research product

A new class of spaces with all finite powers Lindelof

We consider a new class of open covers and classes of spaces defined from them, called "iota spaces". We explore their relationship with epsilon-spaces (that is, spaces having all finite powers Lindelof) and countable network weight. An example of a hereditarily epsilon-space whose square is not hereditarily Lindelof is provided.

research product

A common extension of Arhangel'skii's Theorem and the Hajnal-Juhasz inequality

AbstractWe present a result about $G_{\unicode[STIX]{x1D6FF}}$ covers of a Hausdorff space that implies various known cardinal inequalities, including the following two fundamental results in the theory of cardinal invariants in topology: $|X|\leqslant 2^{L(X)\unicode[STIX]{x1D712}(X)}$ (Arhangel’skiĭ) and $|X|\leqslant 2^{c(X)\unicode[STIX]{x1D712}(X)}$ (Hajnal–Juhász). This solves a question that goes back to Bell, Ginsburg and Woods’s 1978 paper (M. Bell, J.N. Ginsburg and R.G. Woods, Cardinal inequalities for topological spaces involving the weak Lindelöf number, Pacific J. Math. 79(1978), 37–45) and is mentioned in Hodel’s survey on Arhangel’skiĭ’s Theorem (R. Hodel, Arhangel’skii’s so…

research product

Noetherian type in topological products

The cardinal invariant "Noetherian type" of a topological space $X$ (Nt(X)) was introduced by Peregudov in 1997 to deal with base properties that were studied by the Russian School as early as 1976. We study its behavior in products and box-products of topological spaces. We prove in Section 2: 1) There are spaces $X$ and $Y$ such that $Nt(X \times Y) < \min\{Nt(X), Nt(Y)\}$. 2) In several classes of compact spaces, the Noetherian type is preserved by the operations of forming a square and of passing to a dense subspace. The Noetherian type of the Cantor Cube of weight $\aleph_\omega$ with the countable box topology, $(2^{\aleph_\omega})_\delta$, is shown in Section 3 to be closely related …

research product

P-spaces and the Volterra property

We study the relationship between generalizations of $P$-spaces and Volterra (weakly Volterra) spaces, that is, spaces where every two dense $G_\delta$ have dense (non-empty) intersection. In particular, we prove that every dense and every open, but not every closed subspace of an almost $P$-space is Volterra and that there are Tychonoff non-weakly Volterra weak $P$-spaces. These results should be compared with the fact that every $P$-space is hereditarily Volterra. As a byproduct we obtain an example of a hereditarily Volterra space and a hereditarily Baire space whose product is not weakly Volterra. We also show an example of a Hausdorff space which contains a non-weakly Volterra subspace…

research product

Free sequences and the tightness of pseudoradial spaces

Let F(X) be the supremum of cardinalities of free sequences in X. We prove that the radial character of every Lindelof Hausdorff almost radial space X and the set-tightness of every Lindelof Hausdorff space are always bounded above by F(X). We then improve a result of Dow, Juhasz, Soukup, Szentmiklossy and Weiss by proving that if X is a Lindelof Hausdorff space, and $$X_\delta $$ denotes the $$G_\delta $$ topology on X then $$t(X_\delta ) \le 2^{t(X)}$$ . Finally, we exploit this to prove that if X is a Lindelof Hausdorff pseudoradial space then $$F(X_\delta ) \le 2^{F(X)}$$ .

research product

Cardinal estimates involving the weak Lindelöf game

AbstractWe show that if X is a first-countable Urysohn space where player II has a winning strategy in the game $$G^{\omega _1}_1({\mathcal {O}}, {\mathcal {O}}_D)$$ G 1 ω 1 ( O , O D ) (the weak Lindelöf game of length $$\omega _1$$ ω 1 ) then X has cardinality at most continuum. This may be considered a partial answer to an old question of Bell, Ginsburg and Woods. It is also the best result of this kind since there are Hausdorff first-countable spaces of arbitrarily large cardinality where player II has a winning strategy even in the weak Lindelöf game of countable length. We also tackle the problem of finding a bound on the cardinality of a first-countable space where player II has a wi…

research product

Dense metrizable subspaces in powers of Corson compacta

We characterize when the countable power of a Corson compactum has a dense metrizable subspace and construct consistent examples of Corson compacta whose countable power does not have a dense metrizable subspace. We also give several remarks about ccc Corson compacta and, as a byproduct, we obtain a new proof of Kunen and van Mill’s characterization of when a Corson compactum supporting a strictly positive measure is metrizable.

research product

Infinite games and chain conditions

We apply the theory of infinite two-person games to two well-known problems in topology: Suslin's Problem and Arhangel'skii's problem on $G_\delta$ covers of compact spaces. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable and 2) in every compact space satisfying the game-theoretic version of the weak Lindel\"of property, every cover by $G_\delta$ sets has a continuum-sized subcollection whose union is $G_\delta$-dense.

research product

On closures of discrete sets

The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.

research product

Countably compact weakly Whyburn spaces

The weak Whyburn property is a generalization of the classical sequential property that was studied by many authors. A space X is weakly Whyburn if for every non-closed set \({A \subset X}\) there is a subset \({B \subset A}\) such that \({\overline{B} \setminus A}\) is a singleton. We prove that every countably compact Urysohn space of cardinality smaller than the continuum is weakly Whyburn and show that, consistently, the Urysohn assumption is essential. We also give conditions for a (countably compact) weakly Whyburn space to be pseudoradial and construct a countably compact weakly Whyburn non-pseudoradial regular space, which solves a question asked by Angelo Bella in private communica…

research product

Cardinal inequalities involving the Hausdorff pseudocharacter

We establish several bounds on the cardinality of a topological space involving the Hausdorff pseudocharacter $H\psi(X)$. This invariant has the property $\psi_c(X)\leq H\psi(X)\leq\chi(X)$ for a Hausdorff space $X$. We show the cardinality of a Hausdorff space $X$ is bounded by $2^{pwL_c(X)H\psi(X)}$, where $pwL_c(X)\leq L(X)$ and $pwL_c(X)\leq c(X)$. This generalizes results of Bella and Spadaro, as well as Hodel. We show additionally that if $X$ is a Hausdorff linearly Lindel\"of space such that $H\psi(X)=\omega$, then $|X|\le 2^\omega$, under the assumption that either $2^{&lt;\mathfrak{c}}=\mathfrak{c}$ or $\mathfrak{c}&lt;\aleph_\omega$. The following game-theoretic result is shown: i…

research product

Cardinal invariants of cellular Lindelof spaces

A space X is said to be cellular-Lindelof if for every cellular family $$\mathcal {U}$$ there is a Lindelof subspace L of X which meets every element of $$\mathcal {U}$$ . Cellular-Lindelof spaces generalize both Lindelof spaces and spaces with the countable chain condition. Solving questions of Xuan and Song, we prove that every cellular-Lindelof monotonically normal space is Lindelof and that every cellular-Lindelof space with a regular $$G_\delta $$ -diagonal has cardinality at most $$2^\mathfrak {c}$$ . We also prove that every normal cellular-Lindelof first-countable space has cardinality at most continuum under $$2^{<\mathfrak {c}}=\mathfrak {c}$$ and that every normal cellular-Lindel…

research product

P-spaces and the Whyburn property

We investigate the Whyburn and weakly Whyburn property in the class of $P$-spaces, that is spaces where every countable intersection of open sets is open. We construct examples of non-weakly Whyburn $P$-spaces of size continuum, thus giving a negative answer under CH to a question of Pelant, Tkachenko, Tkachuk and Wilson. In addition, we show that the weak Kurepa Hypothesis (a set-theoretic assumption weaker than CH) implies the existence of a non-weakly Whyburn $P$-space of size $\aleph_2$. Finally, we consider the behavior of the above-mentioned properties under products; we show in particular that the product of a Lindel\"of weakly Whyburn P-space and a Lindel\"of Whyburn $P$-space is we…

research product

Comparing weak versions of separability

Our aim is to investigate spaces with sigma-discrete and meager dense sets, as well as selective versions of these properties. We construct numerous examples to point out the differences between these classes while answering questions of Tkachuk [30], Hutchinson [17] and the authors of [8].

research product

Cardinal Invariants for the $G_\delta$ topology

We prove upper bounds for the spread, the Lindel\"of number and the weak Lindel\"of number of the $G_\delta$-topology on a topological space and apply a few of our bounds to give a short proof to a recent result of Juh\'asz and van Mill regarding the cardinality of a $\sigma$-countably tight homogeneous compactum.

research product

Upper bounds for the tightness of the $$G_\delta $$-topology

We prove that if X is a regular space with no uncountable free sequences, then the tightness of its $$G_\delta $$ topology is at most the continuum and if X is, in addition, assumed to be Lindelof then its $$G_\delta $$ topology contains no free sequences of length larger then the continuum. We also show that, surprisingly, the higher cardinal generalization of our theorem does not hold, by constructing a regular space with no free sequences of length larger than $$\omega _1$$ , but whose $$G_\delta $$ topology can have arbitrarily large tightness.

research product

Variations of selective separability II: Discrete sets and the influence of convergence and maximality

A space $X$ is called selectively separable(R-separable) if for every sequence of dense subspaces $(D_n : n\in\omega)$ one can pick finite (respectively, one-point) subsets $F_n\subset D_n$ such that $\bigcup_{n\in\omega}F_n$ is dense in $X$. These properties are much stronger than separability, but are equivalent to it in the presence of certain convergence properties. For example, we show that every Hausdorff separable radial space is R-separable and note that neither separable sequential nor separable Whyburn spaces have to be selectively separable. A space is called \emph{d-separable} if it has a dense $\sigma$-discrete subspace. We call a space $X$ D-separable if for every sequence of …

research product

On the cardinality of almost discretely Lindelof spaces

A space is said to be almost discretely Lindelof if every discrete subset can be covered by a Lindelof subspace. Juhasz et al. (Weakly linearly Lindelof monotonically normal spaces are Lindelof, preprint, arXiv:1610.04506 ) asked whether every almost discretely Lindelof first-countable Hausdorff space has cardinality at most continuum. We prove that this is the case under $$2^{<{\mathfrak {c}}}={\mathfrak {c}}$$ (which is a consequence of Martin’s Axiom, for example) and for Urysohn spaces in ZFC, thus improving a result by Juhasz et al. (First-countable and almost discretely Lindelof $$T_3$$ spaces have cardinality at most continuum, preprint, arXiv:1612.06651 ). We conclude with a few rel…

research product

A short proof of a theorem of Juhasz

Abstract We give a simple proof of the increasing strengthening of Arhangelʼskii Theorem. Our proof naturally leads to a refinement of this result of Juhasz.

research product

Selective versions of chain condition-type properties

We study selective and game-theoretic versions of properties like the ccc, weak Lindel\"ofness and separability, giving various characterizations of them and exploring connections between these properties and some classical cardinal invariants of the continuum.

research product