0000000000930141

AUTHOR

Mario Berrettoni

Newly discovered orichalcum ingots from Mediterranean sea: Further investigation

Abstract In February 2016, 47 ingots were found in the seabed of Contrada Bulala (Gela, CL, Italy) near the site where 40 ingots had previously been recovered. The ingots composition was determined to be a Cu - Zn alloy, dated by the archaeologist to the VI century B.C. This specific alloy was then known as Orichalcum. From an archaeological point of view, the first question raised about the new discovery was whether the ingots of the first and the second excavations belonged to the same shipwreck. Following the previous study, an elemental analysis was performed on the ingots from the second finding by using ICP-OS and ICP-MS techniques. The chemometric treatment of the analytical results …

research product

Evidence for a Double Doping Regime in Nd:YAG nanopowders

Nanopowders of Yttrium Aluminium Garnet doped with neodymium (Nd:YAG) were investigated by X-Ray Absorption Fine Structure (XAFS) at the Nd LIII-edge in the 1.3 - 20.8 % doping range. XANES spectra appear similar in the full range of the Nd concentration. However, a significant decrease in the white line intensity of XANES is revealed as the quantity of Nd doping ions increases. Plotting the white line intensity as a function of Nd doping ions reveals two linear trends with two different slopes, identifying a threshold value where the neodymium concentration reaches 5 at.% This experimental finding provides support for the existence of a double doping regime in Nd:YAG nanopowders.

research product

Synthesis and antibacterial activity of iron-hexacyanocobaltate nanoparticles.

This paper deals with the synthesis and characterization of iron-hexacyanocobaltate (FeHCC) and its antibacterial properties. The nanoparticles were prepared by a facile co-precipitation technique. Crystal structure, particle morphology, and elemental composition were determined using X-ray Powder Diffraction, X-ray fluorescence spectroscopy, Transmission Electron Microscopy (TEM), and Infrared Spectroscopy (IR). The antibacterial activity of the FeHCC nanoparticles was tested against Escherichia coli and Staphylococcus aureus as models for Gram-negative and Gram-positive bacteria, respectively, by bacterial counting method and microscopic visualization (TEM, FEG-SEM, and fluorescence micro…

research product

Cobalt hexacyanoferrate–poly(methyl methacrylate) composite: Synthesis and characterization

Abstract The preparation of cobalt hexacyanoferrate nanoparticles–poly(methyl methacrylate) (CoHCF–PMMA) composites are described together with their characterization and thermochromic properties. CoHCF nanoparticles – investigated by dynamic light scattering – were prepared by optimizing solvent composition and temperature to obtain nanoparticles with a reduced degree of aggregation. The nanoparticles were embedded in a PMMA matrix to obtain a transparent coloured composite which was studied by transmission electron microscopy. The nanoparticle chromic features, enhanced by their reduced sizes, were investigated by UV–vis and FT-IR spectroscopy.

research product

Synthesis and Characterization of Nanostructured Cobalt Hexacyanoferrate

Cobalt hexacyanoferrate (CoHCF) nanoparticles have been synthesized by mixing aqueous solutions of K3Fe(CN)6 and CoCl2 under vigorous stirring at different temperatures and following two different procedures, drop-by-drop or immediate mixing. The resulting CoHCF nanoparticles, with dimensions of several tens of nanometers, were characterized using TEM, SEM-EDX, IR, and XRD. Their electrochemical behavior was investigated in comparison with the CoHCF powder bulk compound. The CoHCF nanoparticles exhibit an electrochemically driven conversion to the bulk one that has been investigated by a chemometric approach in order to establish the best synthetic parameters. The rate and the degree of con…

research product

Synthesis of yttrium aluminum garnet nanoparticles in confined environment, and their characterization

Abstract Nanopowders of yttrium aluminum garnet (YAG, Y3Al5O12) have been prepared by thermal treatment of hydroxides obtained by synthesis in a confined environment constituted by water/Cetyltrimethylammonium bromide (CTAB)/1-butanol/n-heptane. The phase behavior of the above system has been investigated on varying the water/CTAB molar ratio (R) at constant 1-butanol/CTAB and heptane/CTAB molar ratio. The dispersed aqueous phases were constituted by solutions of ammonia and of yttrium and aluminum nitrates, respectively. Measures of Kinematic Viscosity, Electrical Conductivity and Small Angle X-ray Scattering have been carried out. It was found that, on increasing the ammonia solution cont…

research product

First discovery of orichalcum ingots from the remains of a 6th century BC shipwreck near Gela (Sicily) seabed

Ingots recently recovered from the seabed near Gela, a major harbour of Sicily, reveal an unexpected side of ancient metallurgy. The ingots were found near remains of a ship and earthenware dated around the end of the VI century BC and probably coming from the eastern Mediterranean and the Aegean sea. The ingots were analysed by means of X-Ray Fluorescence spectroscopy via a portable spectrometer. Results indicate that they are mostly consist of copper and zinc although many of them have a significant amount of lead. This alloy is nowday called brass, but in ancient time it was know as orichalcum, one of the rarest and most precious alloy along with gold and silver. Only small items of oric…

research product

Electrochemistry of TiO2–iron hexacyanocobaltate composite electrodes

Abstract In this paper we investigate the electrochemical behavior of iron hexacyanocobaltate (FeHCC) in comparison to the cobalt hexacyanoferrate (CoHCF). The best results were achieved on electrochemical synthesized film of FeHCC on the TiO2 modified electrodes. The chemical and physical characterizations confirm the formation of the FeHCC with the classical cubic crystal structure of the Prussian blue analogs, with cell parameter a very close to 10 A, as well as the formation of micro aggregates of TiO2 covered by FeHCC. The synthesis was performed on various substrates such as glassy carbon (GC), graphite foil (GF) and indium tin oxide (ITO) in order to develop new technological applica…

research product

A multivariate approach to the study of orichalcum ingots from the underwater Gela's archaeological site

Abstract In this work a careful ICP-OES and ICP-MS investigation of 38 ancient ingots has been performed to determine both major components and trace elements content to find a correlation between the observed different features and the composition. The ingots, recovered in an underwater archaeological site of various finds near Gela (CL, Italy), were previously investigated by X-Ray Fluorescence (XRF) spectroscopy to know the composition of the alloy and it was found that the major elements were copper and zinc, in a ratio compatible with the famous orichalcum similar to the contemporary brass that was considered a precious metal in ancient times. The discovery of huge amount this alloy is…

research product

Synthesis of yttrium aluminum garnet nanoparticles in confined environment II: Role of the thermal treatment on the composition and microstructural evolution

Abstract Nanoparticles of yttrium aluminum garnet (YAG, Y 3 Al 5 O 12 ) have been obtained by thermal treatments, at several temperature in the range 400–950 °C, of the precursors synthetized via co-precipitation in water in oil microemulsion. The obtained nanoparticles have been characterized by means of X-ray Diffraction and Transmission Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (EDS) and Select Area Electron Diffraction (SAED). Results show the phase evolution occurring to obtain not aggregated nanoparticles of YAG phase. A possible growth mechanism of YAG nanoparticles is discussed on the basis of observed particle microstructure and morphology. The results i…

research product

Physicochemical characterization of metal hexacyanometallate–TiO2composite materials

The paper describes the synthesis and characterization of novel TiO2–metal hexacyanometallates (MHCMs) composite materials. The starting material, TiO2, was modified by addition of cobalt-hexacyanoferrate (CoHCF) or iron-hexacyanocobaltate (FeHCC) at various concentrations. The resulting composites were characterized as follows: cyclic voltammetry (CV) followed the formation of TiO2–MHCM clusters, TEM micrographs studied their morphology, XAS and XPS data indicated that MHCM bonds to TiO2 through the nitrogen atom of its –CN group and modifies the environment of Ti compared to that of pure anatase. As expected, and confirmed by UV-Vis and XP-valence band data, the electronic properties of T…

research product