0000000000947546

AUTHOR

Luisa Sciortino

showing 69 related works from this author

Direct sunlight facility for testing and research in HCPV

2014

A facility for testing different components for HCPV application has been developed in the framework of "Fotovoltaico ad Alta Efficienza" (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and ou…

SunlightEngineeringHeliostatbusiness.industryNuclear engineeringMechanical engineeringHeat sinkSolar energySuns in alchemyElectronic equipmentData loggerheliostat High Concentrated PhotoVoltaic module multijunction cellbusiness
researchProduct

Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level

2016

HKUST-1 is a metal-organic framework (MOF) which plays a significant role both in applicative and basic fields of research, thanks to its outstanding properties of adsorption and catalysis but also because it is a reference material for the study of many general properties of MOFs. Its metallic group comprises a pair of Cu2+ ions chelated by four carboxylate bridges, forming a structure known as paddle-wheel unit, which is the heart of the material. However, previous studies have well established that the paddle-wheel is incline to hydrolysis. In fact, the prolonged exposure of the material to moisture promotes the hydrolysis of Cu-O bonds in the paddle-wheels, so breaking the crystalline n…

metal-organic-frameworks MOF electron paramagnetic resonance EPR ESR water structural stabilityInorganic chemistryFOS: Physical sciences02 engineering and technology010402 general chemistry01 natural sciencesAtomic unitslaw.inventionCatalysisMetalCrystalchemistry.chemical_compoundAdsorptionlawPhysics - Chemical PhysicsCarboxylatePhysical and Theoretical ChemistryElectron paramagnetic resonanceChemical Physics (physics.chem-ph)Condensed Matter - Materials ScienceChemistryMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyChemical engineeringvisual_artvisual_art.visual_art_mediumMetal-organic framework0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Thermal modelling of the ATHENA X-IFU filters

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-IFU instrument of the ATHENA mission requires a set of thermal filters to reduce the photon shot noise onto its cryogenic detector and to protect it from molecular contamination. A set of five filters, operating at different nominal temperatures corresponding to the cryostat shield temperatures, is currently baselined. The knowledge of the actual filter temperature profi…

CryostatMaterials scienceCondensed Matter Physic01 natural sciencesthermal simulationSettore FIS/05 - Astronomia E AstrofisicaOpticsthermal filter0103 physical sciencesThermalEmissivityRadiative transferElectrical and Electronic Engineering010306 general physicsThermal analysis010303 astronomy & astrophysicsX-IFUbusiness.industryElectronic Optical and Magnetic MaterialDetectorShot noiseComputer Science Applications1707 Computer Vision and Pattern RecognitionATHENAApplied MathematicFilter (video)businessSpace Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
researchProduct

Visible-ultraviolet vibronic emission of silica nanoparticles

2014

We report the study of the visible-ultraviolet emission properties and the structural features of silica nanoparticles prepared through a laboratory sol-gel technique. Atomic force microscopy, Raman and Infrared investigations highlighted the 10 nm size, purity and porosity of the obtained nanoparticles. By using time resolved photoluminescence techniques in air and in a vacuum we were able to single out two contributions in the visible emission: the first, stable in both atmospheres, is a typical fast blue band centered around 2.8 eV; the second, only observed in a vacuum around the 3.0-3.5 eV range, is a vibrational progression with two phonon modes at 1370 cm(-1) and 360 cm(-1). By fully…

Materials sciencePhotoluminescenceSpectrophotometry InfraredSurface PropertiesInfraredPhononsilica nanoparticles surface defects phonon-coupling photoluminescenceAnalytical chemistryGeneral Physics and AstronomyNanoparticleMicroscopy Atomic ForceSpectrum Analysis Ramanmedicine.disease_causesymbols.namesakemedicineParticle SizePhysical and Theoretical ChemistryPorositySilicon DioxidesymbolsNanoparticlesSpectrophotometry UltravioletLuminescenceRaman spectroscopyPorosityUltravioletPhys. Chem. Chem. Phys.
researchProduct

Crossing the boundary between face-centred cubic and hexagonal close packed: the structure of nanosized cobalt is unraveled by a model accounting for…

2014

The properties of nanostructured cobalt in the fields of magnetic, catalytic and biomaterials depend critically on Co close packing. This paper reports a structural analysis of nanosized cobalt based on the whole X-ray diffraction (XRD) pattern simulation allowed by the Debye equation. The underlying structural model involves statistical sequences of cobalt layers and produces simulated XRD powder patterns bearing the concurrent signatures of hexagonal and cubic close packing (h.c.p. and f.c.c.). Shape, size distribution and distance distribution between pairs of atoms are also modelled. The simulation algorithm allows straightforward fitting to experimental data and hence the quantitative …

DiffractionMaterials scienceExtended X-ray absorption fine structureClose-packing of equal spheresStackingAb initiochemistry.chemical_elementMolecular physicsGeneral Biochemistry Genetics and Molecular BiologyXANESCondensed Matter::Materials ScienceCrystallographysymbols.namesakechemistryDebye–Hückel equationsymbolsCobaltJournal of Applied Crystallography
researchProduct

Thermal Filters for the ATHENA X-IFU: Ongoing Activities Toward the Conceptual Design

2016

ATHENA is the L2 mission selected by ESA to pursue the science theme “Hot and Energetic Universe.” One of the two focal plane instruments is the X-ray Integral Field Unit, an array of TES microcalorimeters operated at T $$<$$ 100 mK. To allow the X-ray photons focused by the telescope to reach the detector, windows have to be opened on the cryostat thermal shields. X-ray transparent filters need to be mounted on these open windows to attenuate the IR radiation from warm surfaces, to attenuate RF electromagnetic interferences on TES sensors and SQUID electronics, and to protect the detector from contamination. This paper reviews the ongoing activities driving the design of the X-IFU thermal …

CryostatX-ray AstronomyAtomic and Molecular Physics and OpticATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Condensed Matter Physics; Atomic and Molecular Physics and Optics; Materials Science (all)ShieldsCondensed Matter Physic01 natural sciencesThermal Filterlaw.invention010309 opticsTelescopeATHENA; Thermal Filters; X-IFU; X-ray Astronomy; Atomic and Molecular Physics and Optics; Materials Science (all); Condensed Matter PhysicsOpticsSettore FIS/05 - Astronomia E AstrofisicaConceptual designlawAtomic and Molecular Physics0103 physical sciencesGeneral Materials ScienceElectronics010303 astronomy & astrophysicsThermal FiltersPhysicsX-ray astronomyX-IFUbusiness.industryDetectorCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENACardinal pointMaterials Science (all)and Opticsbusiness
researchProduct

Synchrotron x-ray transmission measurements and modeling of filters investigated for Athena

2020

International audience; Advanced Telescope for High-Energy Astrophysics is a large-class astrophysics space mission selected by the European Space Agency to study the theme "Hot and Energetic Universe." The mission essentially consists of a large effective area x-ray telescope and two detectors: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both instruments require filters to shield from out-of-band radiation while providing high transparency to x-rays. The mission is presently in phase B; thus, to consolidate the preliminary design, investigated filter materials need to be properly characterized by experimental test campaigns. We report results from high-resolution…

synchrotron radiationComputer scienceAstrophysics::High Energy Astrophysical PhenomenaMechanical EngineeringAstrophysics::Instrumentation and Methods for AstrophysicsSynchrotron radiationtelescopesAstronomy and AstrophysicsElectronic Optical and Magnetic Materialslaw.inventionTelescopeFilter designSettore FIS/05 - Astronomia E AstrofisicaTransmission (telecommunications)Space and Planetary ScienceControl and Systems EngineeringlawFilter (video)[SDU]Sciences of the Universe [physics]CalibrationOptical filterInstrumentationDigital filterastrophysics space mission Athena optical and thermal filters Wide Field Imager X-ray Integral Field Unit x-ray transmissionRemote sensing
researchProduct

Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water

2014

Abstract We report the investigation of luminescent nanoparticles produced by ns pulsed Nd:YAG laser ablation of silicon in water. Combined characterization by AFM and IR techniques proves that these nanoparticles have a mean size of ∼3 nm and a core–shell structure consisting of a Si-nanocrystal surrounded by an oxide layer. Time resolved luminescence spectra evidence visible and UV emissions; a band around 1.9 eV originates from Si-nanocrystals, while two bands centered at 2.7 eV and 4.4 eV are associated with oxygen deficient centers in the SiO 2 shell.

Materials scienceSiliconCore–shellmedicine.medical_treatmentOxideAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_elementNanoparticleSpectral lineAtomic force microscopychemistry.chemical_compoundmedicineSi nanocrystalLaser ablationLaser ablation;Si nanocrystal;Silica;Core–shell;Time-resolved luminescence;Atomic force microscopy;Micro-Raman;IR absorptionNear-infrared spectroscopyTime-resolved luminescenceSilicaSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsAblationLaser ablationSurfaces Coatings and FilmsMicro-RamanchemistryLuminescenceIR absorption
researchProduct

Disclosing the emissive surface traps in green-emitting carbon nanodots

2021

Abstract The bright photoluminescence of surface-functionalized carbon nanoparticles, known as carbon nanodots (CDs), has been studied for more than a decade because of its fundamental photo-physical interest and strong technological potential. However, the essential nature of the electronic states involved in their typical light emission remains very elusive. Here, we provide conclusive evidence that surface carboxylic moieties are the key to CD fluorescence. The synergy of nanosecond and femtosecond optical studies, cryogenic fluorescence, computational investigations and chemical engineering of a strategically chosen model CD system, allows to demonstrate that their visible-light transit…

Surface (mathematics)PhotoluminescenceMaterials scienceCryogenic studieschemistry.chemical_element02 engineering and technologyGeneral ChemistryNanosecond010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFluorescenceFluorescence0104 chemical sciencesElectron transferchemistryChemical physicsFemtosecondFemtosecond spectroscopyCarbon dotsGeneral Materials ScienceLight emissionQuantum chemical calculations0210 nano-technologyCarbon
researchProduct

Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline Structure

2018

Nitrogen content in carbon dots (CDs) plays a crucial role both on the structure and on the optical properties. We synthesized two distinct families of CDs which differ both in structure and in optical emission, demonstrating how nitrogen determines the structure and the optical properties of N-CDs in two main cases: low content and high content of nitrogen. While the low-nitrogen-content family is characterized by blue-emitting nanoparticles with a N-doped hexagonal C-graphite crystalline core structure and a complex surface structure, the high-nitrogen-content family is composed of nanoparticles behaving as dual emitters (blue and green) with a hexagonal β-C3N4crystalline core structure a…

Materials scienceElectronic Optical and Magnetic Materialchemistry.chemical_element02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesNitrogen0104 chemical sciencesElectronic Optical and Magnetic MaterialsSurfaces Coatings and FilmsGeneral EnergyEnergy (all)chemistryChemical engineeringPhysical and Theoretical Chemistry0210 nano-technologyCarbon
researchProduct

Vibronic structures in the visible luminescence of silica nanoparticles

2014

Time resolved photoluminescence investigation in air and in vacuum atmosphere of the visible luminescence related to silica surface defects is here reported. Two contributions can be singled out: one, observed both in air and in vacuum, is the well-known blue band, peaked around 2.8 eV decaying in ∼5 ns; the other, only observed in vacuum, is a structured emission in the violet range characterized by two vibronic progressions spaced 1370 cm−1 and 360 cm−1 decaying in ∼100 ns. In contrast with previous attribution, the well distinguishable spectroscopic properties together with the observation of the effects induced by the interaction with nitrogen allow to state that the emission bands orig…

AtmosphereSilica nanoparticlesRange (particle radiation)PhotoluminescencechemistrySilica nanoparticles defects phonon-coupling photoluminescencechemistry.chemical_elementNanoparticleAtomic physicsLuminescenceNitrogenBlue bandAIP Conference Proceedings
researchProduct

ATHENA WFI optical blocking filters development status toward the end of the instrument phase-A

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The Wide Field Imager (WFI) is one of the two instruments of the ATHENA astrophysics space mission approved by ESA as the second large mission in the Cosmic Vision 2015-2025 Science Programme. The WFI, based on a large array of depleted field effect transistors (DEPFET), will provide imaging in the 0.2-15 keV band over a 40'x40' field of view, simultaneously with spectrally an…

X-ray detectorCosmic VisionPhotonX-ray detectorWide Field ImagerField of viewCondensed Matter Physic7. Clean energy01 natural sciences010309 opticsX-ray astronomyOpticsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAthenaSpectral resolutionElectrical and Electronic EngineeringOptical blocking filter010303 astronomy & astrophysicsPhysicsCMOS sensorbusiness.industryElectronic Optical and Magnetic MaterialDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionPhoton countingApplied MathematicActive pixel sensor13. Climate actionbusinessDEPFET
researchProduct

Filters design and characterization for LAD instrument onboard eXTP

2022

Copyright 2022 Society of Photo‑Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this publication for a fee or for commercial purposes, and modification of the contents of the publication are prohibited. The LAD (Large Area Detector) instrument, onboard the Sino-European mission eXTP (enhanced X-ray Timing and Polarimetry), will perform single-photon, high-resolution timing and energy measurements, in the energy range 2–30 keV, with a large collecting area. Its silicon drift detectors need shielding from NIR/Vis/UV light by astrophysical sources and the bright Ea…

exTP LAD X-ray filters thin membraneSettore FIS/05 - Astronomia E Astrofisica
researchProduct

Active shape correction of a thin glass/plastic x-ray mirror

2015

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the app…

Materials scienceFOS: Physical sciencesX-ray telescopeSettore ING-INF/01 - ElettronicaFeedbacklaw.inventionTelescopeSettore FIS/05 - Astronomia E AstrofisicaOpticsApertureslawX-raysFocal lengthAngular resolutionInstrumentation and Methods for Astrophysics (astro-ph.IM)Image resolutionX-ray telescopesSpatial resolutionbusiness.industryGlassesOpticsActive opticsPiezoelectricityMirrorsAstrophysics - Instrumentation and Methods for AstrophysicsbusinessActuatorActuatorsTelescopesSPIE Proceedings
researchProduct

Electrical-optical characterization of multijunction solar cells under 2000X concentration

2014

In the framework of the FAE "Fotovoltaico ad Alta Efficienza" ("High Efficiency Photovoltaic") Research Project (PO FESR Sicilia 2007/2013 4.1.1.1), we have performed electrical and optical characterizations of commercial InGaP/InGaAs/Ge triple-junction solar cells (1 cm2) mounted on a prototype HCPV module, installed in Palermo (Italy). This system uses a reflective optics based on rectangular off-axis parabolic mirror with aperture 45×45 cm2 leading to a geometrical concentration ratio of 2025. In this study, we report the I-V curve measured under incident power of about 700 W/m2 resulting in an electrical power at maximum point (PMP) of 41.4 W. We also investigated the optical properties…

Engineeringbusiness.industryParabolic reflectorBand gapAperturePhotovoltaic systemElectroluminescenceConcentration ratioSpectral lineSemiconductorOpticsMultijunction InGaP/InGaAs/Ge solar cells high concentration photovoltaic electroluminescence I-V curveOptoelectronicsbusiness
researchProduct

Investigation by raman spectroscopy of the decomposition process of HKUST-1 upon exposure to air

2016

We report an experimental investigation by Raman spectroscopy of the decomposition process of Metal-Organic Framework (MOF) HKUST-1 upon exposure to air moisture (T=300 K, 70% relative humidity). The data collected here are compared with the indications obtained from a model of the process of decomposition of this material proposed in literature. In agreement with that model, the reported Raman measurements indicate that for exposure times longer than 20 days relevant irreversible processes take place, which are related to the occurrence of the hydrolysis of Cu-O bonds. These processes induce small but detectable variations of the peak positions and intensities of the main Raman bands of th…

Atomic and Molecular Physics and OpticArticle SubjectAnalytical chemistry02 engineering and technology010402 general chemistry01 natural sciencesAnalytical Chemistrysymbols.namesakeRaman bandlcsh:QC350-467Relative humiditySpectroscopySpectroscopyMoistureChemistryChemical process of decomposition021001 nanoscience & nanotechnologyDecompositionAtomic and Molecular Physics and Optics0104 chemical sciencesScientific methodsymbols0210 nano-technologyRaman spectroscopylcsh:Optics. LightAnalytical Chemistry; Atomic and Molecular Physics and Optics; Spectroscopy
researchProduct

Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

2018

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…

PhysicsCryostatX-IFUCosmic VisionAtomic and Molecular Physics and Opticbusiness.industryDetectorShieldsX-ray microcalorimeterThermal filterCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsCharacterization (materials science)OpticsFilter (video)0103 physical sciencesThermalRadiative transferGeneral Materials ScienceAthenaMaterials Science (all)010306 general physicsbusiness010303 astronomy & astrophysics
researchProduct

Carbon nanotubes thin filters for x-ray detectors in space

2022

In this paper, we present the first results from an investigation performed on nanometric thin pellicles based on carbon nanotubes (CNT) of potential interest for manufacturing large area optical blocking filters to protect soft X-ray detectors in astrophysics space missions. In order to evaluate the effective capability of such materials to block UV/VIS/IR radiation, while being highly transparent in the soft X-rays and strong enough to withstand the severe launch stresses, we have performed a suite of characterization measurements. These include: UV/VIS/IR and X-ray absorption spectroscopy, X-ray Photoelectron Spectroscopy and Scanning Electron Microscopy on bare and Al coated small self-…

Settore FIS/05 - Astronomia E AstrofisicaX-ray detectors for astrophysics optical blocking filters CNT synchrotron absorption spectroscopy X-ray photoelectron spectroscopy mechanical testsSpace Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray
researchProduct

Nitrogen-doped carbon dots embedded in a SiO2 monolith for solid-state fluorescent detection of Cu2+ ions

2017

We describe the simple fabrication of SiO2 sol-gel monoliths embedding highly luminescent carbon nanodots (CDs) sensitive to metal ions. The pristine CDs we synthesize display an intense dual emission consisting in two fluorescence bands in the green and violet region, and we demonstrate that this photoluminescence is substantially unchanged when the dots are incorporated in the SiO2 matrix. The emission of these CDs is quenched by interactions with Cu2+ ions, which can be used to detect these ions with a detection limit of 1 μM. The chromophores remain accessible to diffusing Cu2+ ions even after embedding CDs in the sol-gel monolith, where their detection capabilities are preserved. Such …

PhotoluminescenceMaterials scienceAtomic and Molecular Physics and OpticMetal ions in aqueous solutionAnalytical chemistryBioengineering02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesFunctional materialIonPhase (matter)General Materials ScienceMonolithPhotoluminescenceRatiometric sensorSensorgeographygeography.geographical_feature_categoryChemistry (all)General ChemistryChromophore021001 nanoscience & nanotechnologyCondensed Matter PhysicsFluorescenceCarbon dotAtomic and Molecular Physics and Optics0104 chemical sciencesModeling and SimulationMaterials Science (all)0210 nano-technologyLuminescence
researchProduct

Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray tra…

Cosmic VisionComputer scienceCondensed Matter PhysicBlocking (statistics)01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaWFI0103 physical sciencesSensitivity (control systems)Aerospace engineeringElectrical and Electronic Engineering010306 general physicsFEAX-IFU010308 nuclear & particles physicsbusiness.industryFilterElectronic Optical and Magnetic MaterialDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionTransparency (human–computer interaction)ATHENAVibrationApplied MathematicCardinal pointFilter (video)X-Raybusiness
researchProduct

The thin and medium filters of the EPIC camera on-board XMM-Newton: measured performance after more than 15 years of operation

2016

After more than 15 years of operation of the EPIC camera on board the XMM-Newton X-ray observatory, we have reviewed the status of its Thin and Medium filters. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, Raman scattering, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. Furthermore, we have investigated the status of the EPIC flight filters by performing an analysis of the optical loading in the PN offset maps to gauge variations in the optical and UV transmission. We both investigated repea…

EPIC01 natural sciencesfilters; X-rays: instrumentation; X-rays: XMM-Newton; Astronomy and Astrophysics; Space and Planetary Science [X-rays]symbols.namesakeApparent magnitudeOpticsSettore FIS/05 - Astronomia E AstrofisicaObservatory0103 physical sciencesX-rays: XMM-NewtonStatistical analysis010306 general physics010303 astronomy & astrophysicsRemote sensingX-rays: instrumentationPhysicsbusiness.industryAtomic force microscopyX-rays: filterDetectorAstronomy and AstrophysicsAstronomy and AstrophysicOn boardSpace and Planetary SciencesymbolsbusinessRaman scattering
researchProduct

Local structure of gallate proton conductors

2009

Lanthanum barium gallate proton conductors are based on disconnected GaO4 groups. The insertion of hydroxyls in the LaBaGaO4 network proceeds through self-doping with Ba2+, consequent O2- vacancy formation to fulfill charge neutrality. With a structural investigation on self-doped LaBaGaO4 oxides using synchrotron XRD and EXAFS on the Ga K-edge, we find that: (a) the GaO4 tetrahedra retain their size throughout the whole series; (b) the GaO4 tetrahedra rotate as rigid bodies on hydration, leading to the formation of a network of shorter O-O configurations that are stabilized by hydrogen bonds; (c) contraction of the lattice occurs along the a unit cell axis, as a consequence of an overall s…

HistoryEXAFS gallate XRD proton conductorChemistryHydrogen bondchemistry.chemical_elementGallateCrystal structureComputer Science ApplicationsEducationCrystallographyChemical bondVacancy defectX-ray crystallographyLanthanumProton conductor
researchProduct

Effects of Pressure, Thermal Treatment, and O2 Loading in MCM41, MSU-H, and MSU-F Mesoporous Silica Systems Probed by Raman Spectroscopy

2015

We present a Raman study of the effects induced by pressure, thermal treatments, and O2 loading in MCM41, MSU-H, and MSU-F representative mesoporous silica. We compared the starting powders with the mechanically pressed tablets produced applying pressures of ∼0.2 and ∼0.45 GPa. The spectra of the three untreated tablets evidence that the main value of the Si-O-Si angle decreases and that in the MCM41 and the MSU-H Si-O-Si hydrolysis occurs, whereas such a process is absent or much less efficient in the MSU-F. Despite their different networks, the three powders tend to crystallize in cristobalite when treatments are at 1000 °C. The MCM41 and MSU-H tablets exhibit behavior similar to their st…

Materials scienceElectronic Optical and Magnetic MaterialSettore FIS/01 - Fisica SperimentaleMineralogySurfaces Coatings and FilmThermal treatmentMesoporous silicaCristobaliteSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialssymbols.namesakeHydrolysisGeneral EnergyTridymiteEnergy (all)Chemical engineeringPhase (matter)symbolsMoleculePhysical and Theoretical ChemistryRaman spectroscopy
researchProduct

Realization and drive tests of active thin glass x-ray mirrors

2016

A technique to obtain lightweight and high-resolution focusing mirror segments for large aperture X-ray telescopes is the hot slumping of thin glass foils. In this approach, already successfully experimented to manufacture the optics of the NuSTAR X-ray telescope, thin glasses are formed at high temperature onto a precisely figured mould. The formed glass foils are subsequently stacked onto a stiff backplane with a common axis and focus to form an XOU (X-ray Optical Unit), to be later integrated in the telescope optic structure. In this process, the low thickness of the glass foils guarantees a low specific mass and a very low obstruction of the effective area. However, thin glasses are sub…

Materials sciencebusiness.industryAntenna apertureActive opticsX-ray telescopePiezoelectricitySettore ING-INF/01 - Elettronicalaw.inventionTelescopeOpticsSettore FIS/05 - Astronomia E AstrofisicalawAngular resolutionFocus (optics)ActuatorbusinessX-ray mirrors active optics thin glass mirrors piezoelectric actuators
researchProduct

A real-space approach to the analysis of stacking faults in close-packed metals: G(r) modelling and Q-space feedback

2019

An R-space approach to the simulation and fitting of a structural model to the experimental pair distribution function is described, to investigate the structural disorder (distance distribution and stacking faults) in close-packed metals. This is carried out by transferring the Debye function analysis into R space and simulating the low-angle and high-angle truncation for the evaluation of the relevant Fourier transform. The strengths and weaknesses of the R-space approach with respect to the usual Q-space approach are discussed.

PhysicsTruncationMathematical analysisStackingPair distribution functionCondensed Matter PhysicsSpace (mathematics)BiochemistryInorganic Chemistrysymbols.namesakeFourier transformDistribution (mathematics)Structural BiologysymbolsGeneral Materials ScienceDebye functionPhysical and Theoretical ChemistryActa Crystallographica Section A Foundations and Advances
researchProduct

Structure of the FeBTC Metal–Organic Framework: A Model Based on the Local Environment Study

2015

The local environment of iron in FeBTC, a metal organic framework commercially known as Basolite F300, is investigated combining XANES and EXAFS studies of the iron K-edge. The building block of the FeBTC can be described as an iron acetate moiety. Dehydration induces a change in the coordination of the first shell while preserving the network. We propose that the local structure around Fe atoms does not undergo a rearrangement, thus, leading to the formation of an open site. The analysis conveys that the FeBTC is a disordered network of locally ordered blocks.

Materials scienceExtended X-ray absorption fine structureStructure (category theory)Shell (structure)Block (periodic table)XANESMetal-Organic FrameworkXANESSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyEXAFSGeneral EnergyLocal environmentMoietyMetal-organic frameworkPhysical and Theoretical Chemistry
researchProduct

The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale

2017

Fluorescent carbon nanodots are a novel family of carbon-based nanoscale materials endowed with an outstanding combination of properties that make them very appealing for applications in nanosensing, photonics, solar energy harvesting and photocatalysis. One of the remarkable properties of carbon dots is their strong sensitivity to the local environment, especially to metal ions in solution. These interactions provide a testing ground for their marked photochemical properties, highlighted by many studies, and frequently driven by charge transfer events. Here we combine several optical techniques, down to femtosecond time resolution, to understand the interplay between carbon nanodots and aq…

Materials scienceQuenching (fluorescence)530 Physicschemistry.chemical_elementNanotechnology02 engineering and technology620 Engineering010402 general chemistry021001 nanoscience & nanotechnologyElementary charge01 natural sciences0104 chemical sciencesIonElectron transferchemistryChemical physicsFemtosecondPhotocatalysisGeneral Materials ScienceMaterials Science (all)0210 nano-technologyGround stateCarbonNanoscale
researchProduct

ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…

X-ray detectorCryostatCosmic VisionPhotonComputer scienceShieldsCondensed Matter Physicmicrocalorimeter01 natural sciences7. Clean energySettore FIS/05 - Astronomia E AstrofisicaX-ray Integral Field Unit (X-IFU)0103 physical sciencesthermal thin-film filterElectrical and Electronic EngineeringAerospace engineering010306 general physics010303 astronomy & astrophysicsbusiness.industryElectronic Optical and Magnetic MaterialDetectorAstrophysics::Instrumentation and Methods for AstrophysicsShot noiseComputer Science Applications1707 Computer Vision and Pattern RecognitionTransition Edge SensorApplied MathematicATHENA X-ray observatoryRadio frequencyTransition edge sensorbusinessSpace Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
researchProduct

Aging of MCM41, MSU-H and MSU-F mesoporous systems investigated through the Raman spectroscopy

2014

Here we report an experimental investigation, based on the Raman spectroscopy, on the aging of some mesoporous silica based systems. In details, we studied the aging in air of the MCM41, the MSU-H and the MSU-F materials by acquiring the Raman spectra of as received and of mechanically pressed, at 0.2 and 0.45 GPa, powders. Our data evidenced that the starting powders of the MCM41 and of the MSU-H undergo structural modification when they are exposed to the ambient atmosphere, such modification consisting in the decrease of the D2 Raman band (originated by the three member rings). At variance the powders of the MSU-F appear to be stable. Furthermore, by pressing the starting powders to prod…

PressingHydrolysissymbols.namesakeMaterials scienceRaman bandSettore FIS/01 - Fisica SperimentaleAnalytical chemistrysymbolsMineralogynanosilica mesoporous silica structural properties Raman spectroscopyMesoporous silicaMesoporous materialRaman spectroscopy
researchProduct

Surface investigation and aluminum oxide estimation on test filters for the ATHENA X-IFU and WFI detectors

2016

The ATHENA mission provides the demanded capabilities to address the ESA science theme "Hot and Energetic Universe". Two complementary instruments are foreseen: the X-IFU (X-ray Integral Field Unit) and WFI (Wide Field Imager). Both the instruments require filters to avoid that the IR radiation heats the X-IFU cryogenic detector and to protect the WFI detector from UV photons. Previous experience on XMM filters recommends to employ bilayer membrane consisting of aluminum deposited on polyimide. In this work, we use the X-ray Photoelectron Spectroscopy (XPS) to quantify the native aluminum oxide thickness that affects the spectral properties of the filter. The estimation of the oxide thickne…

PhotonMaterials sciencebusiness.industryPhotoemission spectroscopyInfraredAthena mission thermal filters aluminum oxide.thermal filtersDetector02 engineering and technologyRadiation021001 nanoscience & nanotechnology01 natural sciences7. Clean energy010309 opticsaluminum oxideOpticsSettore FIS/05 - Astronomia E AstrofisicaX-ray photoelectron spectroscopyFilter (video)0103 physical sciencesPrototype filter0210 nano-technologybusinessAthena mission
researchProduct

Determination of Geometry Arrangement of Copper Ions in HKUST-1 by XAFS During a Prolonged Exposure to Air

2017

We present an experimental investigation focused on the local structural changes taking place around Cu2+ions in metal− organic framework (MOF) HKUST-1 for different times of exposure to air by XAFS (X-ray absorption fine structure). The analysis involves both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) regions around the Cu K-edge. Starting from the paddle-wheel structures proposed in literature, a more detailed description of the geometrical environment of Cu2+ions has been found. In particular, the paddle-wheel structure of a fresh sample, which means a pristine HKUST-1 material with a single water molecule weakly adsorbed on each C…

Extended X-ray absorption fine structureElectronic Optical and Magnetic MaterialAnalytical chemistrychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopperXANES0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsX-ray absorption fine structureIonEnergy (all)General EnergyAdsorptionchemistryMoleculePhysical and Theoretical ChemistryAbsorption (chemistry)0210 nano-technologyThe Journal of Physical Chemistry C
researchProduct

Photoluminescence of Carbon Dots Embedded in a SiO2 Matrix

2016

Abstract We synthetized carbon dots by a pyrolitic method, and studied their photoluminescence in aqueous environment and upon trapping in a solid matrix. To this aim, we devised a facile procedure allowing to embed the dots in amorphous SiO2, without the need of any pre-functionalization of the nanoparticles, and capable of yielding a brightly photoluminescent monolith. Experimental data reveal a remarkable similarity between the emission properties of carbon dots in water and in SiO2, suggesting that the chromophores responsible of the photoluminescence undergo only weak interactions with the environment. Time-resolved photoluminescence data reveal that the typical photoluminescence tunab…

PhotoluminescenceMaterials sciencePhotoluminescent nanocarbonAnalytical chemistryNanoparticlechemistry.chemical_element02 engineering and technologyTrapping010402 general chemistry01 natural sciencesCarbon dots; Photoluminescent nanocarbons; Photoluminescent silica monolith; Time-resolved photoluminescence; Materials Science (all)Photoluminescence excitationMonolithgeographygeography.geographical_feature_categorybusiness.industryChromophore021001 nanoscience & nanotechnologyCarbon dot0104 chemical sciencesAmorphous solidchemistryOptoelectronicsPhotoluminescent silica monolithMaterials Science (all)0210 nano-technologybusinessCarbonTime-resolved photoluminescence
researchProduct

Manufacturing an active X-ray mirror prototype in thin glass

2015

Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported he…

Nuclear and High Energy PhysicsMaterials scienceactive optic02 engineering and technologyactive optics; piezoelectric actuators; thin glass mirrors; X-ray mirrors; Instrumentation; Nuclear and High Energy Physics; RadiationSettore ING-INF/01 - Elettronica01 natural sciencesSignallaw.invention010309 opticsSettore FIS/05 - Astronomia E AstrofisicaOpticslaw0103 physical sciencesInstrumentationNuclear and High Energy PhysicRadiationbusiness.industrypiezoelectric actuatorthin glass mirrorActive optics021001 nanoscience & nanotechnologyLaserPiezoelectricitySynchrotronPhotolithography0210 nano-technologyActuatorbusinessX-ray mirrorVoltageJournal of Synchrotron Radiation
researchProduct

A Temperature-Dependent X-Ray Absorption Characterization of Test Filters for the ATHENA Mission X-IFU Instrument

2018

In order to work properly, the X-ray Integral Field Unit of the ATHENA mission requires a set of thermal filters that block the infrared radiation, preventing it to reach the detector. Each filter will be mounted and thermally anchored onto a shield of the multistage cryostat and will be kept at the specific temperature of the stage. On the other hand, the filters partially absorb X-rays, and their transmittance has to be carefully characterized. The effect of temperature on the absorption edges of the elements that make up the filters has not been investigated yet. Here, we report the results of a preliminary run on the optical transmission data around the edges of C, N, and O at different…

CryostatAtomic and Molecular Physics and OpticMaterials scienceInfraredThermal filter-02 engineering and technology01 natural sciencesOptics0103 physical sciencesThermalTransmittanceGeneral Materials Science010306 general physicsAbsorption (electromagnetic radiation)X-IFUbusiness.industryDetector021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsATHENAK-edgeK-edgeFilter (video)Materials Science (all)0210 nano-technologybusinessJournal of Low Temperature Physics
researchProduct

Effect of the capping agents on cobalt nanoparticles

2009

The achievement of high information density and fast recording rate in memory devices crucially depends on the structure of magnetic domains. In this paper cobalt nanoparticles are synthesised using two capping agents (TOA, ODA) and two different preparation routes: thermal decomposition (TD) and Solvated Metal Atom Dispersion (SMAD). The interaction of capping agents with free metal clusters and their influence on Co nanoparticles size, atomic structure and oxidation state is investigated by means of X-ray diffraction and X-ray absorption spectroscopy.

HistoryNanostructureExtended X-ray absorption fine structureAbsorption spectroscopyChemistryThermal decompositionNanoparticlechemistry.chemical_elementComputer Science ApplicationsEducationCrystallographyTransition metalChemical engineeringOxidation stateCobaltJournal of Physics: Conference Series
researchProduct

Towards an AMTEC-like device based on non-alkali metal for efficient, safe and reliable direct conversion of thermal to electric power

2018

Alkali Metal ThermoElectric Converters directly convert heat into electric energy and have promising applicability in the field of sustainable and renewable energy. The high theoretical efficiency, close to Carnot's cycle, the lack of moving parts, and the interesting operating temperature range drive the search for new materials able to ensure safe and reliable operation at competitive costs.The present work focuses on the design of a non-alkali metal based cell and on the fabrication of a testing device to validate the design work. The selection of a new operating fluid for the cell improves durability, reliability and safety of the device. Finally, we discuss possible applications to alr…

Work (thermodynamics)Computer sciencebusiness.industry02 engineering and technologyConverters010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesRenewable energysymbols.namesakeReliability (semiconductor)Thermoelectric effectsymbolsElectric power0210 nano-technologyProcess engineeringbusinessCarnot cycleThermal energy2018 AEIT International Annual Conference
researchProduct

Temperature effects on the performances of the ATHENA X-IFU thermal filters

2016

The X-Ray Integral Field Unit (X-IFU) detector on-board ATHENA is an array of TES micro-calorimeters that will operate at ~50 mK. In the current investigated design, five thermal filters (TF) will be mounted on the cryostat shields to attenuate IR radiative load and avoid energy resolution degradation due to photon shot noise. Each filter consists of a thin polyimide film (~50 nm thick) coated with aluminum (~30 nm thick). Since the TF operate at different temperatures in the range 0.05-300 K, it is relevant to study how temperature affects their mechanical/optical performances (e.g. near edge absorption fine structures of the atomic elements in the filter material). Such results are crucia…

CryostatMaterials scienceAbsorption spectroscopybusiness.industrythermal filtersATHENA missionShot noise02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyATHENA mission thermal filters XANES01 natural sciencesXANESSettore FIS/05 - Astronomia E AstrofisicaOptics0103 physical sciencesRadiative transferCalibration010306 general physics0210 nano-technologybusinessAbsorption (electromagnetic radiation)PolyimideSPIE Proceedings
researchProduct

The optical blocking filter for the ATHENA wide field imager: Ongoing activities towards the conceptual design

2015

ATHENA is the L2 mission selected by ESA to pursue the science theme "Hot and Energetic Universe" (launch scheduled in 2028). One of the key instruments of ATHENA is the Wide Field Imager (WFI) which will provide imaging in the 0.1-15 keV band over a 40'x40' large field of view, together with spectrally and time-resolved photon counting. The WFI camera, based on arrays of DEPFET active pixel sensors, is also sensitive to UV/Vis photons. Optically generated electron-hole pairs may degrade the spectral resolution as well as change the energy scale by introducing a signal offset. For this reason, the use of an X-ray transparent optical blocking filter is needed to allow the observation of all …

PhysicsfilterOffset (computer science)PhotonPixelbusiness.industryElectronic Optical and Magnetic MaterialApplied MathematicsAstrophysics::Instrumentation and Methods for AstrophysicsComputer Science Applications1707 Computer Vision and Pattern RecognitionCondensed Matter PhysicPhoton countingATHENAVibrationInstrumentation for AstrophysicX-rayOpticsConceptual designWFIField-effect transistorSpectral resolutionElectrical and Electronic Engineeringbusiness
researchProduct

Radio frequency shielding of thin aluminized plastic filters investigated for the ATHENA X-IFU detector

2018

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two detectors of the ATHENA astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensors (TES) micro-calorimeters covering a field of view of 5' diameter, sensitive in the energy range 0.2-12 keV, and providing a spectral resolution…

CryostatMaterials sciencePhysics::Instrumentation and DetectorsX-ray detectorRF attenuationField of viewCondensed Matter Physic02 engineering and technologyreverberation chamber7. Clean energyElectromagnetic interferenceSettore FIS/05 - Astronomia E AstrofisicaOpticsX-ray Integral Field Unit (X-IFU)thermal thin-film filter0202 electrical engineering electronic engineering information engineeringElectrical and Electronic Engineeringbusiness.industryElectronic Optical and Magnetic Material020502 materialsDetectorAstrophysics::Instrumentation and Methods for Astrophysicsx-ray detectorComputer Science Applications1707 Computer Vision and Pattern Recognition020206 networking & telecommunicationsresonance modeApplied MathematicATHENA X-ray observatoryEMI shielding0205 materials engineeringElectromagnetic shieldingRadio frequencyAntenna (radio)businessSpace Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray
researchProduct

β-C3N4 Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity

2018

Carbon nanodots are known for their appealing optical properties, especially their intense fluorescence tunable in the visible range. However, they are often affected by considerable issues of optical and structural heterogeneity, which limit their optical performance and limit the practical possibility of applying these nanoparticles in several fields. Here we developed a synthesis method capable of producing a unique variety of carbon nanodots displaying an extremely high visible absorption strength (ε &gt; 3 × 106 M(dot)−1 cm−1) and a high fluorescence quantum yield (73%). The high homogeneity of these dots reflects in many domains: morphological (narrow size distribution), structural (q…

Materials sciencebusiness.industryGeneral Chemical EngineeringSettore FIS/01 - Fisica SperimentaleNanoparticleQuantum yield02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyLaser01 natural sciencesFluorescenceMolecular electronic transition0104 chemical scienceslaw.inventionNanocrystallawOptical cavityHomogeneity (physics)Materials Chemistrycarbon nanodots fluorescent nanopraticlesOptoelectronics0210 nano-technologybusinessChemistry of Materials
researchProduct

Electroplated bismuth absorbers for planar NTD-Ge sensor arrays applied to hard x-ray detection in astrophysics

2018

Single sensors or small arrays of manually assembled neutron transmutation doped germanium (NTD-Ge) based microcalorimeters have been widely used as high energy-resolution detectors from infrared to hard X-rays. Several planar technological processes were developed in the last years aimed at the fabrication of NTD-Ge arrays, specifically designed to produce soft X-ray detectors. One of these processes consists in the fabrication of the absorbers. In order to absorb efficiently hard X-ray photons, the absorber has to be properly designed and a suitable material has to be employed. Bismuth offers interesting properties in terms of absorbing capability, of low heat capacity (needed to obtain h…

Materials scienceFabricationelectroplatingNTD-GeX-ray detectorchemistry.chemical_elementGermaniumCondensed Matter Physic01 natural sciencesthick film010305 fluids & plasmasBismuthX-rayPlanarSettore FIS/05 - Astronomia E AstrofisicaMicrocalorimeter0103 physical sciencesbismuthElectrical and Electronic Engineering010306 general physicsElectroplatingbusiness.industryElectronic Optical and Magnetic MaterialDopingDetectorComputer Science Applications1707 Computer Vision and Pattern RecognitionApplied MathematicchemistryOptoelectronicsbusiness
researchProduct

Manufacturing and testing a thin glass mirror shell with piezoelectric active control

2015

Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto t…

Physics - Instrumentation and DetectorsMaterials scienceactive opticFOS: Physical sciencesMechanical engineeringpiezoelectric actuatorthin glass mirrorInstrumentation and Detectors (physics.ins-det)Settore ING-INF/01 - ElettronicaPiezoelectricitySignallaw.inventionPrinted circuit boardSettore FIS/05 - Astronomia E AstrofisicalawFocal lengthAngular resolutionPhotolithographyX-ray mirrorsAstrophysics - Instrumentation and Methods for AstrophysicsActuatorInstrumentation and Methods for Astrophysics (astro-ph.IM)VoltageSPIE Proceedings
researchProduct

Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C3N4nanocrystalline structure

2016

Carbon nanodots are a class of nanoparticles with variable structures and compositions which exhibit a range of useful optical and photochemical properties. Since nitrogen doping is commonly used to enhance the fluorescence properties of carbon nanodots, understanding how nitrogen affects their structure, electronic properties and fluorescence mechanism is important to fully unravel their potential. Here we use a multi-technique approach to study heavily nitrogen-doped carbon dots synthesized by a simple bottom-up approach and capable of bright and color-tunable fluorescence in the visible region. These experiments reveal a new variant of optically active carbonaceous dots, that is a nanocr…

Materials scienceBand gapSettore FIS/01 - Fisica Sperimentalenanocarbon photoluminescence photo-physics photo-chemistryNanoparticlechemistry.chemical_elementNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesFluorescenceSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Nanocrystalline material0104 chemical scienceschemistryNanocrystalMaterials ChemistryBeta carbon nitride0210 nano-technologyCarbonSurface statesJournal of Materials Chemistry C
researchProduct

Influence of metal–support interaction on the surface structure of gold nanoclusters deposited on native SiOx/Si substrates

2014

The structure of small gold nanoclusters (R ~ 2.5 nm) deposited on different silica on silicon substrates is investigated using several characterization techniques (AFM, XRD, EXAFS and GISAXS). The grain morphology and the surface roughness of the deposited gold clusters are determined by AFM. The in-plane GISAXS intensity is modelled in order to obtain information about the cluster size and the characteristic length scale of the surface roughness. AFM and GISAXS results are in excellent agreement and show that the surface morphology of the deposited clusters depends on whether defect-rich (native) or defect-free (thermal) silica is used as a substrate. Gold clusters show a strong tendency …

Gold clusterMaterials scienceExtended X-ray absorption fine structureGeneral Physics and AstronomyNanoparticleNanotechnologySubstrate (electronics)Thermal treatmentgoldNanoclustersEXAFSsurfaces nanoparticles GISAXS AFMChemical engineeringSurface roughnessGrazing-incidence small-angle scatteringPhysical and Theoretical ChemistryGISAXSmetal-support interactionPhysical Chemistry Chemical Physics
researchProduct

Electrical connections and driving electronics for piezo-actuated x-ray thin glass optics

2016

Use of thin glass modular optics is a technology currently under study to build light, low cost, large area X-ray telescopes for high energy astrophysics space missions. The angular resolution of such telescopes is limited by local deviations from the ideal shape of the mirrors. One possible strategy to improve it consists in actively correcting the mirror profile by gluing thin ceramic piezo-electric actuators on the back of the glasses. A large number of actuators, however, requires several electrical connections to drive them with the different needed voltages. We have developed a process for depositing conductive paths directly on the back of non-planar thin foil mirrors by means of a p…

Materials sciencebusiness.industryX-ray telescopeModular designSettore ING-INF/01 - ElettronicaActive X-ray optics thin glass optics piezoelectric actuators piezoelectric multichannel drivers interconnections patterning X-ray telescope mirrors.Settore FIS/05 - Astronomia E AstrofisicaOpticsvisual_artvisual_art.visual_art_mediumOptoelectronicsElectronicsCeramicThin filmbusinessActuatorElectrical conductorVoltage
researchProduct

Status of the EPIC thin and medium filters on-board XMM-Newton after more than 10 years of operation I: laboratory measurements on back-up filters

2013

After more than ten years of operation of the EPIC camera on board the X-ray observatory XMM-Newton, we have reviewed the status of its Thin and Medium filters by performing both laboratory measurements on back-up filters, and analysis of data collected in-flight. We have selected a set of Thin and Medium back-up filters among those still available in the EPIC consortium, and have started a program to investigate their status by different laboratory measurements including: UV/VIS transmission, X-ray transmission, RAMAN IR spectroscopy, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy. We report the results of the measurements conducted up to now, and point out some lessons lear…

Physicsbusiness.industryAtomic force microscopyDetectorX-ray detectorEPICOn boardSettore FIS/05 - Astronomia E AstrofisicaOpticsObservatoryX-rays: XMM-Newton X-rays: instrumentation X-rays: filtersCalibrationData analysisbusinessSPIE Proceedings
researchProduct

Combined heat and power generation with a HCPV system at 2000 suns

2015

In the framework of the FAE “Fotovoltaico ad Alta Efficienza” (“High Efficiency Photovoltaic”) Research Project funded by the Sicilian Region under the program PO FESR Sicilia 2007/2013 4.1.1.1, we have developed an innovative solar CHP system for the combined production of heat and power at the high concentration level of 2000 suns [1]. This work shows the experimental results obtained on FAE-HCPV modules and analyses the behaviour of the system. The solar radiation is concentrated on commercial InGaP/InGaAs/Ge triple-junction solar cells designed for intensive work. The primary optics is a rectangular off-axis parabolic mirror (with a size of 46x46 = 2116 cm2 in a projection normal to the…

Materials sciencebusiness.industryInGaP/InGaAs/Ge triple-junction solar cellHeat sinkSolar energySolar mirrorSolar cell efficiencyElectricity generationOpticsreflactive opticsHeat transferConcentrating PhotovoltaicOptoelectronicsbusinessElectrical efficiencyThermal energy
researchProduct

Metal thin-film temperature sensor embedded in heat-sink for CPV cells characterization

2014

The efficiency of a photovoltaic cell is dependent on its temperature, for this reason an accurate measurement of this parameter is important to fully characterize the device and to optimize its performance. For CPV applications a significant heat flux is needed to remove excess heat from the cell towards a heat sink, making it difficult to derive the cell temperature. In fact, measurements performed directly between the cell and the heat-sink, by use of commercial bulk sensors, would produce a significant disturbance in the heat flow; on the other hand, a measurement performed out of the cell / heat sink axis would be subject to large uncertainties, due to the high radial temperature gradi…

Materials scienceHCPV multi-junction cell temperature thin-film sensor heat sinkbusiness.industryPhotovoltaic systemHeat sinkCharacterization (materials science)Temperature gradientExcess heatHeat fluxThermometerElectronic engineeringOptoelectronicsbusinessMetal thin film
researchProduct

The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

2023

The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (i…

X-IFU: The X-ray Integral Field UnitCosmology and Nongalactic Astrophysics (astro-ph.CO)The X-ray Integral Field Unit [X-IFU]Solar and stellar astrophysicsFOS: Physical sciences/dk/atira/pure/sustainabledevelopmentgoals/responsible_consumption_and_production[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Settore FIS/05 - Astronomia E AstrofisicaX-raysSDG 7 - Affordable and Clean EnergyInstrumentation and Methods for Astrophysics (astro-ph.IM)Solar and Stellar Astrophysics (astro-ph.SR)High Energy Astrophysical Phenomena (astro-ph.HE)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyAstrophysics of GalaxiesAthena: the advanced telescope for high energy astrophysicsAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAstrophysical phenomenaSpace instrumentationAstrophysics - Solar and Stellar AstrophysicsHigh energySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]the advanced telescope for high energy astrophysics [Athena]Athena: the advanced telescope for high energy astrophysics · X-IFU: The X-ray Integral Field Unit · Space instrumentation · X-rays · ObservatoryObservatoryAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaSDG 12 - Responsible Consumption and ProductionAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Structural Characterization of Surfactant-Coated Bimetallic Cobalt/Nickel Nanoclusters by XPS, EXAFS, WAXS, and SAXS

2011

Cobalt nickel bimetallic nanoparticles were synthesized by changing the sequence of the chemical reduction of Co(II) and Ni(II) ions confined in the core of bis(2-ethylhexyl)phosphate (2)., and Ni(DEHP)(2). The reduction was carried out by mixing, sequentially or contemporaneously, fixed amounts of n-heptane solution of Co(DEHP)2 and Ni(DEHP)2 micelles with a solution of sodium borohydride in ethanol at a fixed (reductant)/(total metal) molar ratio. This procedure involves the rapid formation of surfactant-coated nanoparticles, indicated as Co/Ni (Co after Ni), Ni/Co (Ni after Co), and Co + Ni (simultaneous), followed by their slow separation as nanostructures embedded in a sodium bis(2-eth…

inorganic chemicalsendocrine systemMaterials sciencechemistry.chemical_elementNanoparticleNanoclustersMetalSodium borohydridechemistry.chemical_compoundX-ray photoelectron spectroscopyNANOPARTICLESPARTICLESBimetallic Cobalt/Nickel Nanoclusters. XPS. EXAFS. WAXS. SAXS.GOLDPhysical and Theoretical ChemistryBimetallic stripMICELLESSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographyNickelGeneral Energychemistryvisual_artNANOPARTICLES; PARTICLES; GOLD; MICELLESvisual_art.visual_art_mediumCobaltNuclear chemistry
researchProduct

Bright blue emission of synthesized silica nanoparticles conferred by surface defects

2013

silica nanoparticles luminescence surface defects
researchProduct

Facile synthesis of a monolith of silicon nanocrystal embedded in silica

2013

synthesisilicon nanocrystal
researchProduct

Efficiency of concentration photovoltaic cells governed by luminescence processes

2013

The development of multi-junctions III-V semiconductors solar cells, that combine high conversion efficiency (over 40%) and capability of working under high illumination intensity (up to 1000 suns), has stimulated a rapid growth of concentrating photovoltaic (CPV) technology. The performance of these cells is based on the matching between the semiconductors band gap and the solar spectrum so as to optimize the current balancing between the subcells. This requirement is also important in connection with the CPV modules using lenses, mirrors, optical coupling compounds that introduce a wavelength dependent response to the sunlight. Therefore, care must be exercised in designing optimum cells …

multi-junctions solar cellUV-Visible Down conversionIII-V semiconductorConcentarting photovoltaic
researchProduct

Local environment of yttrium in yttrium-doped barium cerate

2006

researchProduct

Effects of capping agent on cobalt nanoparticles

2009

The achievement of high information density and fast recording rate in memory devices crucially depends on the structure of magnetic domains. In this paper cobalt nanoparticles are synthesised using two capping agents (TOA, ODA) and two different preparation routes: thermal decomposition (TD) and Solvated Metal Atom Dispersion (SMAD). The interaction of capping agents with free metal clusters and their influence on Co nanoparticles size, atomic structure and oxidation state is investigated by means of X-ray diffraction and X-ray absorption spectroscopy.

EXAFS XRD cobalt nanoparticle
researchProduct

Optimization of the Optical Components in a Reflective High CPV Module

2014

HCPV module self-cleaning coating frustum encapsulant
researchProduct

Filters for X-Ray Detectors on Space Missions

2022

Thin filters and gas-tight windows are used in space to protect sensitive X-ray detectors from out-of-band electromagnetic radiation, low-energy particles, and molecular contamination. Though very thin and made of light materials, filters are not fully transparent to X-rays. For this reason, they ultimately define the detector quantum efficiency at low energies. In this chapter, we initially provide a brief overview of filter materials and specific designs adopted on space experiments with main focus on detectors operating at the focal plane of grazing incidence X-ray telescopes. We then provide a series of inputs driving the design and development of filters for high-energy astrophysics sp…

X-ray filters X-ray detectors Thermal filters Optical blocking filters Filter modeling Filter characterization Filter calibration Space missionsSettore FIS/05 - Astronomia E Astrofisica
researchProduct

Nano-Oxides produced by ns laser ablation in liquids

2014

Laser ablation in liquids was successfully applied to produce nanosized oxides from Si, Ti and Zn targets. The obtained colloidal solutions of nanoparticles were investigated by complementary techniques: AFM, IR and Raman spectroscopies; optical absorption and time resolved photoluminescence. The results demonstrate the production of SiO2, TiO2 and ZnO. The absorption and emission properties of these material have been also investigated and appear to be promising for optical applications.

Lases ablation nanosized oxides IR spectroscopy Atomic Force Microscopy time-resolved luminescence
researchProduct

Luminescent Silicon nanocrystals produced by ns pulsed laser ablation

2013

The reduction of Si down to nanoscale introduces a peculiar visible luminescence, surprisingly for a not highly emissive material. This feature is relevant in connection with several application fields (optoelectronics, medicine) and has lead the research towards the development of production methods successful to control the physical and chemical properties of the nanosized Si so as to enhance and tune the luminescence. To this purpose, the laser ablation in liquids is particularly promising since it provides effective controlling parameters (laser photon energy, fluence, repetition rate, liquid reactivity) for the morphology and the structure of Si-related products. Here we report a study…

time-resolved luminescenceLaser ablationsilicon nanocrystal
researchProduct

Emissive titanium dioxide nanoparticles synthesized py pulsed laser ablation in liquid phase

2013

The remarkable applications of TiO2 nanomaterials, including, e.g. photocatalysis and dye-sensitized solar cells, have inspired in the last two decades an extensive amount of research aimed at understanding the properties of these materials. Photoluminescence is scarcely used to probe the electronic properties of TiO2, because neither bulk or nanosized TiO2 commonly display room-temperature emission. In particular, the fundamental luminescence due to the recombination of the self-trapped exciton in anatase TiO2 is typically observed only at low temperatures. We report the synthesis of luminescent titanium dioxide nanoparticles (NPs) by pulsed laser ablation of titanium in aqueous solution. …

Settore FIS/01 - Fisica SperimentaleLaser ablation Titanium dioxide photoluminescence.
researchProduct

UV-Visible down conversion based on nanosized silica promising for CPV applications

2014

solar cells silica nanoparticles luminescence
researchProduct

Crossing the boundary between fcc and hcp: the structure of nanosized cobalt is unraveled by a model of size distribution, shape and stacking faults …

2014

The properties of nanostructured cobalt in the fields of magnetic, catalytic and biomaterials depend critically on Co close-packing. In this paper we report a structural analysis of nanosized cobalt based on the whole XRD pattern simulation allowed by the Debye equation. The underlying structural model involves statistical sequences of cobalt layers and produces simulated XRD powder patterns bearing the concurrent signatures of hexagonal and cubic close packing. Size distribution, shape and distance distribution between pairs of atoms are also modelled. The simulation algorithm allows straightforward fitting to experimental data and hence the assessment of the model parameters. Analysis of …

cobalt XRD EXAFS fcc hcp
researchProduct

Phase change and O2 loading in mesoporous silica MCM41, MSU-H and MSU-F

2014

Settore FIS/01 - Fisica Sperimentalemesoporous silica
researchProduct

A real-space approach to the analysis of stacking faults in close-packed metals: Modelling and Q-space feedback Longo Alessandro

2020

An R-space approach to the simulation and fitting of a structural model to the experimental pair distribution function is described, to investigate the structural disorder (distance distribution and stacking faults) in close-packed metals. This is carried out by transferring the Debye function analysis into R space and simulating the low-angle and high-angle truncation for the evaluation of the relevant Fourier transform. The strengths and weaknesses of the R-space approach with respect to the usual Q-space approach are discussed.

close-packed metalstacking faultcobalt.pair distribution functioncobaltDebye function analysi
researchProduct

Controllo della sintesi e caratterizzazione di nanocompositi di oro e cobalto.

2012

Settore CHIM/03 - Chimica Generale E Inorganicananocompositioro e cobalto.controllo della sintesi
researchProduct

Fluorescence of carbon dots embedded in a SiO2 host matrix

2014

Carbon dots (CD) are an emerging class of recently discovered carbonaceous nanomaterials, which have attracted a large interest because of their bright and characteristically “tunable” fluorescence, and their potential for suggestive applications. Despite quite an intense research, the fundamental properties of these systems are poorly understood and still lively debated. Here we report on a series of experiments on N-doped CDs prepared by thermal decomposition of citric acid and urea. We studied these CDs by steady-state and nanosecond time-resolved photoluminescence, optical absorption, infrared absorption and atomic force microscopy. CDs (3 nanometers-sized) are found to emit two co-exis…

Settore FIS/01 - Fisica SperimentaleLuminescence Carbon dots Carbon nanomaterials
researchProduct

structural organization of the internal core of metal containing reverse micelles

2008

reverse micelles core structure
researchProduct

Synthesis of luminescent glass monoliths embedding water-soluble Carbon dots

2014

Carbon dots (CD) are an emerging class of nanomaterials, currently motivating an intense scientific interest because of their bright and characteristically tunable fluorescence, and their possible applications such as sensors, lasers, imaging agents, white light emitting devices [1]. While most studies focused on CDs in liquid phase, a strong effort is being recently devoted to produce fluorescent solids embedding highly dispersed CDs. Many of these procedures are elaborate and require pre-functionalization of the dots [2]. Here we report a novel and very facile route to prepare glass monoliths containing CDs with no need of pre-functionalization of the dots. Our low-cost synthesis method p…

Settore FIS/01 - Fisica SperimentaleCarbon dots nanoparticles photoluminescence.
researchProduct

A multichannel piezo driver for active mirrors in X-ray telescopes

2016

X-ray astronomy is gaining importance for studying X-ray space sources such as single and binary stars, neutron stars, supernovae and black holes. Due to atmospheric absorption, X-ray telescopes must operate in space on satellites. Among the causes limiting the resolution of modern telescopes are distortions in mirrors shape. An innovative approach for X-ray mirrors aims at correcting the shape errors by means of piezo-ceramic actuators glued to the back of the mirrors, thus creating an “active mirror”. In order to test the viability of shape correction, we fabricated [1] a prototype of a thin glass active mirror, sized 20 cm x 20 cm with a 400 um thickness (Fig. 1). The mirror can allocate…

Settore FIS/05 - Astronomia E AstrofisicaX-ray mirrors active optics thin glass mirrors piezoelectric actuatorsSettore ING-INF/01 - Elettronica
researchProduct