0000000000971946

AUTHOR

A. Giuliani

showing 12 related works from this author

Precise measurement of 2νββ decay of 100Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta (2 νββ) decay of 100Mo to the ground state of 100Ru using lithium molybdate (Li2100MoO4) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg× day, the half-life of 100Mo is determined to be T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the most accurate determination of the 2 νββ half-life of 100Mo to date.

Quantum PhysicsParticle and Plasma PhysicsMolecularNuclearnucl-exphysics.ins-detAtomicNuclear & Particles Physics
researchProduct

Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova Remnants

2023

The local Cosmic Ray (CR) energy spectrum exhibits a spectral softening at energies around 3~PeV. Sources which are capable of accelerating hadrons to such energies are called hadronic PeVatrons. However, hadronic PeVatrons have not yet been firmly identified within the Galaxy. Several source classes, including Galactic Supernova Remnants (SNRs), have been proposed as PeVatron candidates. The potential to search for hadronic PeVatrons with the Cherenkov Telescope Array (CTA) is assessed. The focus is on the usage of very high energy $\gamma$-ray spectral signatures for the identification of PeVatrons. Assuming that SNRs can accelerate CRs up to knee energies, the number of Galactic SNRs whi…

Cherenkov Telescope ArrayGamma rays: generalstatistical [methods]energy spectrumFOS: Physical sciencesVHESettore FIS/05 - Astronomia E Astrofisicacosmic raysMethods: data analysissupernovadata analysis [methods][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Cosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov Telescope Arra ; alactic Supernova Remnants ; PeVatrons ;Methods: statisticalgalactic PeVatronsHigh Energy Astrophysical Phenomena (astro-ph.HE)emission spectrum) supernovae: general [(stars]Astronomy and AstrophysicssensitivityobservatoryGalactic PeVatronscosmic radiationspectralgalaxyhadron(Stars:) supernovae: generalAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalgeneral [gamma rays]signature
researchProduct

Precise measurement of $2\nu\beta\beta$ decay of $^{100}$Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta ($2\nu\beta\beta$) decay of $^{100}$Mo to the ground state of $^{100}$Ru using lithium molybdate (\crystal) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory. From a total exposure of $42.235$ kg$\times$d, the half-life of $^{100}$Mo is determined to be $T_{1/2}^{2\nu}=[7.12^{+0.18}_{-0.14}\,\mathrm{(stat.)}\pm0.10\,\mathrm{(syst.)}]\times10^{18}$ years. This is the most accurate determination of the $2\nu\beta\beta$ half-life of $^{100}$Mo to date. We also confirm, with the statistical significance of $>3\sigm…

Lithium molybdatePhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Analytical chemistry[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-ex01 natural sciencesAtomicchemistry.chemical_compoundParticle and Plasma Physicstwo-neutrino double-beta decay scintillating bolometers0103 physical sciencesddc:530Beta (velocity)Nuclear[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNuclear ExperimentEngineering (miscellaneous)physics.ins-detS076H2NPhysicsQuantum Physics010308 nuclear & particles physicsPhysicsMolecularBeta decayNuclear & Particles Physics3. Good healthchemistrydouble beta decays bolometersUnderground laboratoryGround state
researchProduct

Latest results from CUPID-0

2022

International audience; CUPID-0 is a pilot experiment in scintillating cryogenic calorimetry for the search of neutrino-less double beta decay. 26 ZnSe crystals were operated continuously in the first project phase (March 2017 - December 2018), demonstrating unprecedented low levels of background in the region of interest at the Q-value of $^{82}\rm{Se}$. From this successful experience comes a demonstration of full alpha to beta/gamma background separation, the most stringent limits on the $^{82}\rm{Se}$ neutrino-less double beta decay, as well as the most precise measurement of the $^{82}$Se half-life. After a detector upgrade, CUPID-0 began its second and last phase (June 2019 - February…

backgroundSettore FIS/04scintillation counter cryogenicstutkimuslaitteetdouble-beta decay[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikkaBayesiandecay modescrystalilmaisimetdetector upgrade[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]spectralground stateydinfysiikkacalorimeter cryogenicsCUPID-0 Double beta decay cryogenic calorimeters scintillation exotic decay modes
researchProduct

Evidence of Single State Dominance in the Two-Neutrino Double- β Decay of Se82 with CUPID-0

2019

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

PhysicsParticle physicsDouble beta decay0103 physical sciencesGeneral Physics and AstronomyNeutrino010306 general physics01 natural sciencesPhysical Review Letters
researchProduct

Axion search with BabyIAXO in view of IAXO

2020

Axions are a natural consequence of the Peccei-Quinn mechanism, the most compelling solution to the strong-CP problem. Similar axion-like particles (ALPs) also appear in a number of possible extensions of the Standard Model, notably in string theories. Both axions and ALPs are very well motivated candidates for Dark Matter, and in addition, they would be copiously produced at the sun's core. A relevant effort during the last decade has been the CAST experiment at CERN, the most sensitive axion helioscope to-date. The International Axion Observatory (IAXO) is a large-scale 4th generation helioscope. As its primary physics goal, IAXO will look for solar axions or ALPs with a signal to backgro…

Particle physicsPhysics - Instrumentation and Detectorssolar axion[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]experimental methodsDark matterFOS: Physical sciences7. Clean energyString (physics)Standard Modelaxion helioscopedesign [detector]International Axion Observatory (IAXO)ObservatoryPeccei-Quinn mechanismDark Matterdetector design[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental TechniquesAxionsun-tracking systemsphysics.ins-detactivity reportdetector: designPhysicsinstrumentationHelioscopeLarge Hadron Colliderdetectorsolar [axion]DESYInstrumentation and Detectors (physics.ins-det)[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]IAXOmagnetopticsaxion: solar
researchProduct

A photometric redshift of z = 1.8$^{\sf{+0.4}}_{\sf{-0.3}}$ for the AGILE GRB 080514B

2008

Aims: The AGILE gamma-ray burst GRB 080514B is the first burst with detected emission above 30 MeV and an optical afterglow. However, no spectroscopic redshift for this burst is known. Methods: We compiled ground-based photometric optical/NIR and millimeter data from several observatories, including the multi-channel imager GROND, as well as ultraviolet \swift UVOT and X-ray XRT observations. The spectral energy distribution of the optical/NIR afterglow shows a sharp drop in the \swift UVOT UV filters that can be utilized for the estimation of a redshift. Results: Fitting the SED from the \swift UVOT $uvw2$ band to the $H$ band, we estimate a photometric redshift of $z=1.8^{+0.4}_{-0.3}$, c…

Astrophysics::High Energy Astrophysical PhenomenaUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica::OtrasFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysicsmedicine.disease_causemedicineAstrophysics::Solar and Stellar AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicasQCAstrophysics::Galaxy AstrophysicsQB:ASTRONOMÍA Y ASTROFÍSICA::Astronomía óptica::Otras [UNESCO]Photometric redshiftGamma rays: burstsPhysicsAstrophysics (astro-ph)Astronomy and AstrophysicsRedshiftAfterglowbursts [Gamma rays]Space and Planetary ScienceSpectral energy distributionMillimeterGamma-ray burst:ASTRONOMÍA Y ASTROFÍSICA::Otras especialidades astronómicas [UNESCO]UltravioletAstronomy & Astrophysics
researchProduct

The NHXM observatory

2011

Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…

Black-holesAcceleration mechanismCosmic Visionmedia_common.quotation_subjectPolarimetry7. Clean energy01 natural sciencesMissionsCosmologyPhysical cosmologyNon-thermal emissionAcceleration mechanism; Accretion physics; Black-holes; Compact objects; Cosmology; Missions; Non-thermal emission; X-ray imaging; X-ray polarimetry; Astronomy and Astrophysics; Space and Planetary ScienceObservatory0103 physical sciencesBroadbandX-ray polarimetry010303 astronomy & astrophysicsCompact objectsmedia_commonPhysics010308 nuclear & particles physicsX-ray imagingVegaAstronomyAstronomy and AstrophysicsAccretion physicsCosmologySkySpace and Planetary ScienceExperimental Astronomy
researchProduct

Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of ^{82}Se with CUPID-0.

2019

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

two-neutrinos double-β decay; nuclear matrix elements; scintillating cryogenic calorimetersDouble beta decay exited states nuclear modelnuclear matrix elementshiukkasfysiikkaydinfysiikkatwo-neutrinos double-β decayscintillating cryogenic calorimetersPhysical review letters
researchProduct

Precise measurement of $$2\nu \beta \beta $$ 2νββ decay of $$^{100}$$ 100 Mo with the CUPID-Mo detection technology

2020

We report the measurement of the two-neutrino double-beta ($$2\nu \beta \beta $$ 2νββ ) decay of $$^{100}$$ 100 Mo to the ground state of $$^{100}$$ 100 Ru using lithium molybdate ($$\hbox {Li}_2^{\;\;100}\hbox {MoO}_4$$ Li2100MoO4 ) scintillating bolometers. The detectors were developed for the CUPID-Mo program and operated at the EDELWEISS-III low background facility in the Modane underground laboratory (France). From a total exposure of 42.235 kg$$\times $$ × day, the half-life of $$^{100}$$ 100 Mo is determined to be $$T_{1/2}^{2\nu }=[7.12^{+0.18}_{-0.14}\,\mathrm {(stat.)}\pm 0.10\,\mathrm {(syst.)}]\times 10^{18}$$ T1/22ν=[7.12-0.14+0.18(stat.)±0.10(syst.)]×1018 years. This is the mo…

European Physical Journal
researchProduct

Determining gA/gV with High-Resolution Spectral Measurements Using a LiInSe2 Bolometer

2022

Neutrinoless double beta decay (0νββ) processes sample a wide range of intermediate forbidden nuclear transitions, which may be impacted by quenching of the axial vector coupling constant (gA/gV), the uncertainty of which plays a pivotal role in determining the sensitivity reach of 0νββ experiments. In this Letter, we present measurements performed on a high-resolution LiInSe2 bolometer in a “source = detector” configuration to measure the spectral shape of the fourfold forbidden β decay of 115In. The value of gA/gV is determined by comparing the spectral shape of theoretical predictions to the experimental β spectrum taking into account various simulated background components as well as a …

ydinfysiikka
researchProduct

Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre

2021

Full list of authors: Acharyya, A.; Adam, R.; Adams, C.; Agudo, I.; Aguirre-Santaella, A.; Alfaro, R.; Alfaro, J.; Alispach, C.; Aloisio, R.; Alves Batista, R.; Amati, L.; Ambrosi, G.; Angüner, E. O.; Antonelli, L. A.; Aramo, C.; Araudo, A.; Armstrong, T.; Arqueros, F.; Asano, K.; Ascasíbar, Y. Ashley, M.; Balazs, C.; Ballester, O.; Baquero Larriva, A.; Barbosa Martins, V.; Barkov, M.; Barres de Almeida, U.; Barrio, J. A.; Bastieri, D.; Becerra, J.; Beck, G.; Becker Tjus, J.; Benbow, W.; Benito, M.; Berge, D.; Bernardini, E.; Bernlöhr, K.; Berti, A.; Bertucci, B.; Beshley, V.; Biasuzzi, B.; Biland, A.; Bissaldi, E.; Biteau, J.; Blanch, O.; Blazek, J.; Bocchino, F.; Boisson, C.; Bonneau Arbe…

Cherenkov Telescope ArrayMATÉRIA ESCURAscale: TeVAstronomyatmosphere [Cherenkov counter]dark matter experimentDark matter theoryenergy resolutionGamma ray experimentsParticleAstrophysicscosmic background radiation01 natural sciences7. Clean energyHigh Energy Physics - Phenomenology (hep-ph)benchmarkWIMPHESSenergy: fluxTeV [scale]relativistic [charged particle]gamma ray experimentMAGIC (telescope)Monte CarloEvent reconstructionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Contractionspatial distributiontrack data analysisPhysicsdensity [dark matter]ClumpyAstrophysics::Instrumentation and Methods for AstrophysicsimagingHigh Energy Physics - Phenomenologydark matter experiments; dark matter theory; gamma ray experiments; galaxy morphologyDark matter experimentsFísica nuclearVERITASAstrophysics - High Energy Astrophysical PhenomenaSimulationsnoiseWIMPAstrophysics::High Energy Astrophysical PhenomenaDark mattersatelliteCosmic background radiationFOS: Physical sciencesAnnihilationdark matter: densityAstrophysics::Cosmology and Extragalactic AstrophysicsCherenkov counter: atmosphereheavy [dark matter]530annihilation [dark matter]GLASTDark matter experiments; Dark matter theory; Galaxy morphology; Gamma ray experimentscosmic radiation [p]0103 physical sciencesCherenkov [radiation]Candidatesddc:530AGNCherenkov radiationRadiative Processesthermal [cross section]010308 nuclear & particles physicsFísicadark matter: annihilationGamma-Ray SignalsCherenkov Telescope Array ; dark matter ; Galactic Center ; TeV gamma-ray astronomyAstronomy and AstrophysicsMassCherenkov Telescope Arrayradiation: CherenkovsensitivityMAGICGalaxyAstronomíadark matter: heavygamma rayp: cosmic radiation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]correlationcharged particle: relativisticflux [energy]Galaxy morphology/dk/atira/pure/subjectarea/asjc/3100/3103galaxysupersymmetry[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cross section: thermal
researchProduct