0000000000983307

AUTHOR

A. Puiu

Evidence of Single State Dominance in the Two-Neutrino Double-β Decay of ^{82}Se with CUPID-0.

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

research product

A design for an electromagnetic filter for precision energy measurements at the tritium endpoint

We present a detailed description of the electromagnetic filter for the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Starting with an initial estimate for the orbital magnetic moment, the higher-order drift process of E×B is configured to balance the gradient-B drift motion of the electron in such a way as to guide the trajectory into the standing voltage potential along the mid-plane of the filter. As a function of drift distance along the length of the filter, the filter zooms in with exponentially increasing precision on the transverse velocity component of the electron kinetic energy. This yields a linear dimension for the total filter length that is exceptio…

research product

Array of cryogenic calorimeters to evaluate the spectral shape of forbidden β-decays : the ACCESS project

The ACCESS (Array of Cryogenic Calorimeters to Evaluate Spectral Shapes) project aims to establish a novel technique to perform precision measurements of forbidden β-decays, which can serve as an important benchmark for nuclear physics calculations and represent a significant background in astroparticle physics experiments. ACCESS will operate a pilot array of cryogenic calorimeters based on natural and doped crystals containing β-emitting radionuclides. In this way, natural (e.g. 113Cd and 115In) and synthetic isotopes (e.g. 99Tc) will be simultaneously measured with a common experimental technique. The array will also include further crystals optimised to disentangle the different backgro…

research product

Latest results from CUPID-0

International audience; CUPID-0 is a pilot experiment in scintillating cryogenic calorimetry for the search of neutrino-less double beta decay. 26 ZnSe crystals were operated continuously in the first project phase (March 2017 - December 2018), demonstrating unprecedented low levels of background in the region of interest at the Q-value of $^{82}\rm{Se}$. From this successful experience comes a demonstration of full alpha to beta/gamma background separation, the most stringent limits on the $^{82}\rm{Se}$ neutrino-less double beta decay, as well as the most precise measurement of the $^{82}$Se half-life. After a detector upgrade, CUPID-0 began its second and last phase (June 2019 - February…

research product

Evidence of Single State Dominance in the Two-Neutrino Double- β Decay of Se82 with CUPID-0

We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

research product