0000000000985234
AUTHOR
Jessica De Loma
Engineering Bacteria to Form a Biofilm and Induce Clumping in Caenorhabditis elegans
Bacteria are needed for a vast range of biotechnological processes, which they carry out either as pure cultures or in association with other bacteria and/or fungi. The potential of bacteria as biofactories is hampered, though, by their limited mobility in solid or semisolid media such as agricultural or domestic waste. This work represents an attempt toward overcoming this limitation by associating bacterial biotechnological properties with the transport ability of the nematode Caenorhabditis elegans. We report here biofilm formation on C. elegans by engineered Escherichia coli expressing a Xhenorhabdus nematophila adhesion operon and induction of nematode social feeding behavior (clumping…
Proteomic insights into the immune response of the Colorado potato beetle larvae challenged with Bacillus thuringiensis.
Bacillus thuringiensis (Bt) toxins constitute effective, environmentally safe biopesticides. Nevertheless, insects' tolerance to Bt is influenced by environmental factors affecting immunity. To understand larval immune response in the devastating coleopteran insect pest Colorado potato beetle (CPB), we undertook a proteomic analysis of hemolymph of non-treated control larvae and larvae consuming non-lethal doses of spore-crystal mixtures containing the coleopteran-active Cry3Aa toxin. Results revealed lower amount of proteins involved in insect growth and higher amount of immune response-related proteins in challenged insects, sustaining the larval weight loss observed. Additionally, we fou…