0000000001000174

AUTHOR

Emil Gustavsson

showing 6 related works from this author

Ubiquitous Structural Signaling in Bacterial Phytochromes

2015

The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.

0303 health sciencesBacteriaPhytochromeProtein dynamicsta1182BiologyX-ray scattering010402 general chemistryBioinformaticsphytochromes01 natural sciences0104 chemical sciences/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitation03 medical and health sciencesprotein dynamicsBiophysicsGeneral Materials SciencePhytochromePhysical and Theoretical ChemistrySignal transductionSDG 6 - Clean Water and SanitationHistidinesignal transduction030304 developmental biologyJournal of Physical Chemistry Letters
researchProduct

Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome.

2020

Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the Pr-to-Pfr transition is facilitated by two intermediate states, called Lumi-R and Meta-R. The molecular structures of the protein in these states are not known and the molecular mechanism of photoconversion is not understood. Here, we apply transient infrared absorption spectroscopy to study the photocycle of the wild-type and Y263F mutant of the phytochrome from Deinococcus radiodurans (DrBphP) from nanoto milliseconds. We identify two sequentially forming Lumi-R states …

Models MolecularLight Signal TransductionSpectrophotometry InfraredspektroskopiaMutantGeneral Physics and AstronomyInfrared spectroscopy010402 general chemistry01 natural sciences03 medical and health scienceschemistry.chemical_compoundProtein structureBacterial ProteinsinfrapunasäteilyPhysical and Theoretical ChemistryTyrosineSpectroscopy030304 developmental biology0303 health sciencesBiliverdinPhytochromebiologyChemistryDeinococcus radioduransbiology.organism_classification0104 chemical sciencesProtein Structure TertiaryMutationBiophysicsproteiinitvalokemiaDeinococcusPhytochromePhysical chemistry chemical physics : PCCP
researchProduct

Light-induced structural changes in a monomeric bacteriophytochrome

2016

International audience; Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of th…

0301 basic medicineAllosteric regulationInfrared spectroscopyBiological Systems010402 general chemistry01 natural sciencesARTICLES03 medical and health scienceschemistry.chemical_compoundSDG 17 - Partnerships for the Goalslcsh:QD901-999[CHIM]Chemical SciencesInstrumentationSpectroscopyRadiationPhytochromebiologyChemistryMolecular biophysicsta1182/dk/atira/pure/sustainabledevelopmentgoals/partnershipsDeinococcus radioduransBiochemical ActivityCondensed Matter Physicsbiology.organism_classification0104 chemical sciences030104 developmental biologyMonomerStructural changebacterial phytochromesBiophysicslcsh:CrystallographyStructural Dynamics
researchProduct

Modulation of Structural Heterogeneity Controls Phytochrome Photoswitching

2019

Phytochromes sense red/far-red light and control many biological processes in plants, fungi, and bacteria. Although crystal structures of dark and light adapted states have been determined, the molecular mechanisms underlying photoactivation remains elusive. Here we demonstrate that the conserved tongue region of the PHY domain of a 57kDa photosensory module of Deinococcus radiodurans phytochrome, changes from a structurally heterogeneous dark state to an ordered light activated state. The results were obtained in solution by utilizing a laser-triggered activation approach detected on the atomic level with high-resolution protein NMR spectroscopy. The data suggest that photosignaling of phy…

Models MolecularLightTongue regionBiophysicsphototransduction03 medical and health sciences0302 clinical medicineProtein DomainsPHYmolekyylidynamiikkaprotein structureNMR-spektroskopiaNuclear Magnetic Resonance Biomolecular030304 developmental biologyphytochrome0303 health sciencesPhytochromebiologyChemistryProtein NMR SpectroscopyDeinococcus radioduransArticlesDarknessbiology.organism_classificationmolecular dynamicsNMRStructural heterogeneityDark stateModulationBiophysicsvalokemiaproteiinitDeinococcusPhytochrome030217 neurology & neurosurgeryBiophysical Journal
researchProduct

Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy

2018

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach …

0301 basic medicineInfrared spectroscopyMolecular Dynamics SimulationBiochemistryCatalysis03 medical and health scienceschemistry.chemical_compoundchromophore-protein interplayColloid and Surface ChemistryBacterial ProteinsSpectroscopy Fourier Transform InfraredPeptide bondta116BiliverdinbiologyPhytochromeHydrogen bondBiliverdineta1182WaterHydrogen BondingDeinococcus radioduransGeneral ChemistryChromophorePhotochemical Processesbiology.organism_classification030104 developmental biologychemistryBiophysicsProtein Conformation beta-StrandDeinococcusPhytochromevalokemiaproteiinitSignal transductionstep-scan FTIR spectroscopyAdenylyl CyclasesJournal of the American Chemical Society
researchProduct

Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase

2017

Sensor histidine kinases are central to sensing in bacteria and in plants. They usually contain sensor, linker, and kinase modules and the structure of many of these components is known. However, it is unclear how the kinase module is structurally regulated. Here, we use nano- to millisecond time-resolved X-ray scattering to visualize the solution structural changes that occur when the light-sensitive model histidine kinase YF1 is activated by blue light. We find that the coiled coil linker and the attached histidine kinase domains undergo a left handed rotation within microseconds. In a much slower second step, the kinase domains rearrange internally. This structural mechanism presents a t…

Models MolecularkinaasitentsyymitHistidine KinaseLightProtein ConformationScienceQCrystallography X-RayArticleProtein Structure SecondaryaktivointiBacterial ProteinsProtein DomainsX-Ray DiffractionphotoactivationScattering Small AngleNanotechnologysensor histidine kinasesNature Communications
researchProduct