0000000001031346

AUTHOR

Akseli Mansikkamäki

showing 122 related works from this author

Mono‐ and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bis‐1,4‐([3]Cumulene)‐p-carboquinoid System

2017

An extended π-system containing two [3]cumulene fragments separated by a p-carboquinoid and stabilized by two capping N-heterocyclic carbenes (NHCs) has been prepared. Mono- and bis(imidazolidinium ethynyl) cations have also been synthesized from the reaction of an NHC with phenylethynyl bromide or 1,4-bis(bromoethynyl)benzene. Cyclic voltammetry coupled with synthetic and structural studies showed that the dication is readily reduced to a neutral, singlet bis-1,4-([3]cumulene)-p-carboquinoid as a result of the π-accepting properties of the capping NHCs. peerReviewed

cumulenes010405 organic chemistryreductionGeneral MedicineN-heterocyclic carbenes010402 general chemistryalkynes01 natural sciencespropargyl cations0104 chemical sciences3. Good health
researchProduct

Effects of Remote Ligand Substituents on the Structures, Spectroscopic, and Magnetic Properties of Two-Coordinate Transition-Metal Thiolate Complexes

2018

The first-row transition-metal(II) dithiolates M(SAriPr4)2 [AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2; M = Cr (1), Mn (3), Fe (4), Co (5), Ni (6), and Zn (7)] and Cr(SArMe6)2 [2; ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2] and the ligand-transfer reagent (NaSAriPr4)2 (8) are described. In contrast to their M(SAriPr6)2 (M = Cr, Mn, Fe, Co, Ni, and Zn; AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2) congeners, which differ from 1 and 3-6 in having p-isopropyl groups on the flanking aryl rings of the terphenyl substituents, compounds 1 and 4-6 display highly bent coordination geometries with S-M-S angles of 109.802(2)° (1), 120.2828(3)° (4), 91.730(3)° (5), and 92.68(2)° (6) as well as relatively close metal-flanking …

010405 organic chemistryLigandligandsArylkompleksiyhdisteetligandit010402 general chemistryRing (chemistry)01 natural sciencesElectron spectroscopy0104 chemical sciencesInorganic ChemistryMetalchemistry.chemical_compoundCrystallographychemistryTransition metalCovalent bondvisual_artTerphenylvisual_art.visual_art_mediumcoordination complexesPhysical and Theoretical Chemistryta116
researchProduct

The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers

2018

One of the first steps in designing ferromagnetic (FM) molecular materials of p-block radicals is the suppression of covalent radical–radical interactions that stabilize a diamagnetic ground state. In this contribution, we demonstrate that FM coupling between p-block radicals can be achieved by constructing mixed dimers from different radicals with differing symmetries of their singly occupied molecular orbitals. The applicability of this approach is demonstrated by studying magnetic interactions in organic radical dimers built from different derivatives of the well-known phenalenyl radical. The calculated enthalpies of dimerization for different homo- and heterodimers show that the formati…

oligomeerimagneettiset ominaisuudetvapaat radikaalit
researchProduct

Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations.

2014

Perfluorarylborane Lewis acids catalyse the addition of silicon-hydrogen bonds across C=C, C=N and C=O double bonds. This 'metal-free' hydrosilylation has been proposed to occur via borane activation of the silane Si-H bond, rather than through classical Lewis acid/base adducts with the substrate. However, the key borane/silane adduct had not been observed experimentally. Here it is shown that the strongly Lewis acidic, antiaromatic 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene forms an observable, isolable adduct with triethylsilane. The equilibrium for adduct formation was studied quantitatively through variable-temperature NMR spectroscopic investigations. The interactio…

chemistry.chemical_classificationDouble bondChemistryStereochemistryHydrosilylationGeneral Chemical EngineeringGeneral ChemistryBoraneFrustrated Lewis pairAdductchemistry.chemical_compoundNucleophilePolymer chemistryLewis acids and basesTriethylsilaneta116Nature chemistry
researchProduct

A nucleophilic gold complex.

2019

Solid-state auride salts featuring the negatively charged Au– ion are known to be stable in the presence of alkali metal counterions. While such electron-rich species might be expected to be nucleophilic (in the same manner as I–, for example), their instability in solution means that this has not been verified experimentally. Here we report a two-coordinate gold complex (NON)AlAuPtBu3 (where NON is the chelating tridentate ligand 4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethylxanthene) that features a strongly polarized bond, Auδ––Alδ+. This is synthesized by reaction of the potassium aluminyl compound [K{Al(NON)}]2 with tBu3PAuI. Computational studies of the complex, includ…

chemistry.chemical_classification010405 organic chemistryChemistryLigandGeneral Chemical EngineeringAtoms in moleculesGeneral Chemistrykompleksiyhdisteetgold010402 general chemistryAlkali metal01 natural scienceskulta0104 chemical sciencesIonElectronegativityCrystallographyNucleophileCovalent bondcoordination complexesCounterionNature chemistry
researchProduct

Cover Picture: Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal DyIII Single-Ion Magnet (Chem. Eur. J. 24/2017)

2017

LanthanideSingle ionChemistryOrganic Chemistrychemistry.chemical_element02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesCrystallographyPentagonal bipyramidal molecular geometryMagnetDysprosiumCover (algebra)0210 nano-technologyChemistry - A European Journal
researchProduct

Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]−: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes

2016

A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctl…

Stereochemistrychemistry.chemical_elementmetal complexes010402 general chemistry01 natural sciencesisomerizationelectronic structuresInorganic Chemistrychemistry.chemical_compoundelektronirakenteetrikkipohjaiset liganditStructural isomerSinglet stateTriplet stateHomolepticta116010405 organic chemistryLigandsulphur-centered ligands0104 chemical sciencesBond lengthNickelCrystallographyOctahedronchemistryisomerisaatiometallikompleksitDalton Transactions
researchProduct

Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]-: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes

2016

A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn–S(C) and Zn–S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(II) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S′,S′′) mode to the Ni(II) centre with three distinctl…

elektronirakenteetrikkipohjaiset liganditmetal complexesisomerisaatiosulphur-centered ligandsmetallikompleksitisomerizationelectronic structures
researchProduct

A diamagnetic iron complex and its twisted sister – structural evidence on partial spin state change in a crystalline iron complex

2021

We report here the syntheses of a diamagnetic Fe complex [Fe(HL)2] (1), prepared by reacting a redox non-innocent ligand precursor N,N′-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H4L) with FeCl3, and its phenoxazine derivative [Fe(L′)2] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it wa…

Materials scienceSpin states010405 organic chemistryLigand010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryParamagnetismCrystallographyCrystallinityUnpaired electronDiamagnetismGround stateSingle crystalDalton Transactions
researchProduct

Computational Analysis of n→π* Back-Bonding in Metallylene-Isocyanide Complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph)

2013

A detailed computational investigation of orbital interactions in metal–carbon bonds of metallylene–isocyanide adducts of the type R2MCNR′ (M = Si, Ge, Sn; R, R′ = alkyl, aryl) was performed using density functional theory and different methods based on energy decomposition analysis. Similar analyses have not been carried out before for metal complexes of isocyanides, even though the related carbonyl complexes have been under intense investigations throughout the years. The results of our work reveal that the relative importance of π-type back-bonding interactions in these systems increases in the sequence Sn < Ge ≪ Si, and in contrast to some earlier assumptions, the π-component cannot be …

bonding analysissitoutuminen (toiminta)metallylene-isocyanide complexesmetallyleeni-isosyanidi -kompleksit
researchProduct

Rare‐earth cyclobutadienyl sandwich complexes: Synthesis, structure and dynamic magnetic properties

2018

The potassium cyclobutadienyl [K2{η4‐C4(SiMe3)4}] (1) reacts with MCl3(THF)3.5 (M=Y, Dy) to give the first rare‐earth cyclobutadienyl complexes, that is, the complex anions [M{η4‐C4(SiMe3)4}{η4‐C4(SiMe3)3‐κ‐(CH2SiMe2}]2−, (2M), as their dipotassium salts. The tuck‐in alkyl ligand in 2M is thought to form through deprotonation of the “squarocene” complexes [M{η4‐C4(SiMe3)4}2]− by 1. Complex 2Dy is a single‐molecule magnet, but with prominent quantum tunneling. An anisotropy barrier of 323(22) cm−1 was determined for 2Dy in an applied field of 1 kOe, and magnetic hysteresis loops were observed up to 7 K. nonPeerReviewed

magneettiset ominaisuudetcyclobutadienyl ligandsmagneetitchemistry.chemical_element010402 general chemistry01 natural sciencesCatalysisDeprotonationAnisotropyta116magnetsAlkylQuantum tunnellingchemistry.chemical_classificationkemiallinen synteesiorganometallics dysprosium010405 organic chemistryLigandOrganic ChemistrykompleksiyhdisteetGeneral Chemistryharvinaiset maametallitMagnetic hysteresis0104 chemical sciencesCrystallographychemistryMagnetDysprosiumsingle-moleculerare-earth elements
researchProduct

Synthesis and characterisation of p-block complexes of biquinoline at different ligand charge states

2017

The first examples of p-block coordination complexes of biquinoline, namely [(biq)BCl2]Cl and [(biq)BCl2]˙, were synthesized and structurally characterized. The acquired data allowed the estimation of the ligand charge state based on its metrical parameters. The subsequent use of this protocol, augmented with theoretical calculations, revealed ambiguities in the published data for transition metal complexes of biquinoline. peerReviewed

Inorganic ChemistryCrystallographyTransition metal010405 organic chemistryChemistryLigandCharge (physics)p-block complexes010402 general chemistryBlock (periodic table)01 natural sciencesta1160104 chemical sciencesDalton Transactions
researchProduct

Synthesis of new hybrid 1,4-thiazinyl-1,2,3-dithiazolyl radicals via Smiles rearrangement

2017

The condensation reaction of 2-aminobenzenethiols and 3-aminopyrazinethiols with 2-amino-6-fluoro-N-methylpyridinium triflate afforded thioether derivatives that were found to undergo Smiles rearrangement and cyclocondensation with sulphur monochloride to yield new hybrid 1,4-thiazine-1,2,3-dithiazolylium cations. The synthesized cations were readily reduced to the corresponding stable neutral radicals with spin densities delocalized over both 1,4-thiazinyl and 1,2,3-dithiazolyl moieties. peerReviewed

synthesis010405 organic chemistryChemistryRadical12010402 general chemistryPhotochemistryCondensation reaction01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundDelocalized electron14-thiazinyl-123-dithiazolyl radicalsThioether4-thiazinyl-1Smiles rearrangementYield (chemistry)Polymer chemistrysynteesiSmiles rearrangementTrifluoromethanesulfonateta1163-dithiazolyl radicalsDalton Transactions
researchProduct

Ferromagnetic kinetic exchange interaction in magnetic insulators

2020

The superexchange theory predicts dominant antiferromagnetic kinetic interaction when the orbitals accommodating magnetic electrons are covalently bonded through diamagnetic bridging atoms/groups. Here we show that explicit consideration of magnetic and (leading) bridging orbitals, together with the electron transfer between the former, reveals a strong ferromagnetic kinetic exchange contribution. First principle calculations show that it is comparable in strength with antiferromagnetic superexchange in a number of magnetic materials with diamagnetic metal bridges. In particular, it is responsible for a very large ferromagnetic coupling ($-10$ meV) between the iron ions in a Fe$^{3+}$-Co$^{…

Work (thermodynamics)magneettiset ominaisuudetMaterials scienceelectronic-structurePhysics MultidisciplinaryFOS: Physical sciencesmagnetic couplingelektronitmagneettikentätKinetic energyteoriatORBITAL PHYSICSCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Materials ScienceANTIFERROMAGNETISMHUBBARD-MODELPhysics - Chemical PhysicsSUPEREXCHANGE INTERACTIONSdensity functional theoryChemical Physics (physics.chem-ph)Condensed Matter - Materials SciencecomplexesScience & TechnologyStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicsCRYSTALmagnetic insulatorsPhysicsSUPERCONDUCTIVITYExchange interactionMaterials Science (cond-mat.mtrl-sci)transitionORDERhubbard-modelsuperexchange interactionsWannier function methodsELECTRONIC-STRUCTUREFerromagnetismPhysical SciencesCondensed Matter::Strongly Correlated ElectronsCOMPLEXESTRANSITION
researchProduct

The Instability of Ni{N(SiMe3 )2 }2 : A Fifty Year Old Transition Metal Silylamide Mystery.

2015

The characterization of the unstable Ni(II) bis(silylamide) Ni{N(SiMe3 )2 }2 (1), its THF complex Ni{N(SiMe3 )2 }2 (THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3 )2 }2 (py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric Ni(I) species, [Ni{N(SiMe3 )2 }]4 (4), also obtainable from LiN(SiMe3 )2 and NiCl2 (DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of Ni(II) to Ni(I) and the stabilization of 4 through dispersion forces.

Steric effectsmagneettiset ominaisuudetChemistrychemistry.chemical_elementdispersiovuorovaikutusGeneral ChemistryInstabilityCatalysisnikkelikompleksitsilyyliamidiligandisilylamidechemistry.chemical_compoundNickelCrystallographynickelTransition metalmagnetismPyridineOrganic chemistrysteeriset vuorovaikutuksetta116dispersion effectsDerivative (chemistry)steric effectsAngewandte Chemie (International ed. in English)
researchProduct

Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnet

2017

The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2PO)2(H2O)5]Br3⋅2 (CyPh2PO)⋅EtOH⋅3 H2O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets.

Ab initioNanotechnology010402 general chemistry01 natural sciencesCatalysisdynamic magnetic measurementschemistry.chemical_compoundPentagonal bipyramidal molecular geometry[CHIM]Chemical SciencesPhysics::Chemical Physicssingle-molecule magnetsta116ComputingMilieux_MISCELLANEOUSPhosphine oxideSingle ionMolecular magnets010405 organic chemistryLigandOrganic ChemistryGeneral ChemistryMagnetic hysteresis0104 chemical sciencesCrystallographychemistryMagnetmolecular magnetsChemistry: A European Journal
researchProduct

Reaction of LiArMe6 (ArMe6ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) with indium(I)chloride yields three m-terphenyl stabilized mixed-valent organoindium su…

2016

Indium(I)chloride reacts with LiArMe6 (ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) in THF to give three new mixed-valent organoindium subhalides. While the 1:1 reaction of InCl with LiArMe6 yields the known metal-rich cluster In8(ArMe6)4 (1), the use of freshly prepared LiArMe6 led to incorporation of iodide, derived from the synthesis of LiArMe6, into the structures, to afford In4(ArMe6)4I2 (2) along with minor amounts of In3(ArMe6)3I2 (3). When the same reaction was performed in 4:3 stoichiometry, the mixed-halide compound In3(ArMe6)3ClI (4) was obtained. Further increasing the chloride:aryl ligand ratio resulted in the formation of the known mixed-halide species In4(ArMe6)4Cl2I2 that can also be…

organoindium subhalidesmolecular clustersDFT laskutorganoindiumhaliditmolekyyliklusteritDFT calculationsröntgenkristallografia
researchProduct

The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers

2018

One of the first steps in designing ferromagnetic (FM) molecular materials of p-block radicals is the suppression of covalent radical-radical interactions that stabilize a diamagnetic ground state. In this contribution, we demonstrate that FM coupling between p-block radicals can be achieved by constructing mixed dimers from different radicals with differing symmetries of their singly occupied molecular orbitals. The applicability of this approach is demonstrated by studying magnetic interactions in organic radical dimers built from different derivatives of the well-known phenalenyl radical. The calculated enthalpies of dimerization for different homo- and heterodimers show that the formati…

magneettiset ominaisuudetMaterials scienceRadicalDimerfree radicalsvapaat radikaalit010402 general chemistry01 natural sciencesoligomerchemistry.chemical_compound0103 physical sciencesGeneral Materials ScienceMolecular orbitalPhysics::Chemical PhysicsPhysical and Theoretical Chemistryta116Coupling010304 chemical physics0104 chemical sciencesoligomeeriFerromagnetismchemistryChemical physicsCovalent bondDiamagnetismGround stateThe Journal of Physical Chemistry Letters
researchProduct

Interplay of spin-dependent delocalization and magnetic anisotropy in the ground and excited states of [Gd2@C78]− and [Gd2@C80]−

2017

The magnetic properties and electronic structure of the ground and excited states of two recently characterized endohedral metallo-fullerenes, [Gd2@C78]- (1) and [Gd2@C80]- (2), have been studied by theoretical methods. The systems can be considered as [Gd2]5+ dimers encapsulated in a fullerene cage with the fifteen unpaired electrons ferromagnetically coupled into an S = 15/2 high-spin configuration in the ground state. The microscopic mechanisms governing the Gd-Gd interactions leading to the ferromagnetic ground state are examined by a combination of density functional and ab initio calculations and the full energy spectrum of the ground and lowest excited states is constructed by means …

Double-exchange mechanismmagneettiset ominaisuudetAb initioGeneral Physics and AstronomyElectronic structure010402 general chemistry01 natural sciencesMolecular physicsDelocalized electronAb initio quantum chemistry methods0103 physical sciencesmacromoleculesPhysical and Theoretical Chemistryrare earth metalsta116makromolekyylitPhysicsta114010304 chemical physicsfullerenesharvinaiset maametallit0104 chemical sciencesUnpaired electronfullereenitExcited statemagnetic propertiesGround stateThe Journal of Chemical Physics
researchProduct

Reversible complexation of ethylene by a silylene under ambient conditions.

2014

Treatment of toluene solutions of the silylenes Si(SArMe6)2 (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2, 1) or Si(SArPri4)2 (ArPri4 = C6H3-2,6(C6H3-2,6-Pri2)2, 2) with excess ethylene gas affords the siliranes (ArMe6S)2tiebar above startSiCH2tiebar above endCH2 (3) or (ArPri4S)2tiebar above startSiCH2tiebar above endCH2 (4). Silirane 4 evolves ethylene spontaneously at room temperature in toluene solution. A Van’t Hoff analysis by variable-temperature 1H NMR spectroscopy showed that ΔGassn = −24.9(2.5) kJ mol–1 for 4. A computational study of the reaction mechanism using a model silylene Si(SPh)2 (Ph = C6H5) was in harmony with the Van’t Hoff analysis, yielding ΔGassn = −24 kJ mol–1 and an activatio…

Reaction mechanism1h nmr spectroscopyEthyleneChemistrySilyleneGeneral ChemistryActivation energymetallylene-isocyanide complexesPhotochemistryBiochemistryTolueneCatalysischemistry.chemical_compoundbonding analysisColloid and Surface Chemistrysitoutuminen (toiminta)ta116metallyleeni-isosyanidi -kompleksitJournal of the American Chemical Society
researchProduct

Reactions of Alkenes and Alkynes with an Acyclic Silylene and Heavier Tetrylenes under Ambient Conditions

2014

Cycloaddition reactions of the acyclic silylene Si(SAriPr4)2 (AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) with a variety of alkenes and alkynes were investigated. Its reactions with the alkynes phenylacetylene and diphenylacetylene and the diene 2,3-dimethyl-1,3-butadiene yielded silacycles (AriPr4S)2tiebar above startSi(CH═tiebar above endCPh) (1), (AriPr4S)2tiebar above startSi(PhC═tiebar above endCPh) (2), and (AriPr4S)2tiebar above startSiCH2CMeCMetiebar above endCH2 (3) at ambient temperature. The compounds were characterized by X-ray crystallography, 1H, 13C, and 29Si NMR spectroscopy, and IR spectroscopy. No reaction was observed with more substituted alkenes such as propene, (Z)-2-butene, te…

DieneTrimethylsilylacyclic silyleneAlkynealkeenit ja alkyynitPhotochemistryMedicinal chemistryInorganic Chemistrychemistry.chemical_compoundraskaammat tetryleenitalkenes and alkynesCyclopenteneambient conditionssykloadditioreaktiotPhysical and Theoretical Chemistryasyklinen silyleeniDiphenylacetyleneta116chemistry.chemical_classificationOrganic ChemistrySilylenecyloaddition reactionsCycloadditionPhenylacetylenechemistrynormaalit ympäristön olosuhteethevier tetrylenes
researchProduct

Carbonyl Back-Bonding Influencing the Rate of Quantum Tunnelling in a Dysprosium Metallocene Single-Molecule Magnet.

2019

The isocarbonyl-ligated metallocene coordination polymers [Cp*2M(μ-OC)W(Cp)(CO)(μ-CO)]∞ were synthesized with M = Gd (1, L = THF) and Dy (2, no L). In a zero direct-current field, the dysprosium version 2 was found to be a single-molecule magnet (SMM), with analysis of the dynamic magnetic susceptibility data revealing that the axial metallocene coordination environment leads to a large anisotropy barrier of 557(18) cm–1 and a fast quantum-tunnelling rate of ∼3.7 ms. Theoretical analysis of two truncated versions of 2, [Cp*2Dy{(μ-OC)W(Cp)(CO)2}2]− (2a), and [Cp*2Dy(OC)2]+ (2b), in which the effects of electron correlation outside the 4f orbital space were studied, revealed that tungsten-to-…

Electronic correlation010405 organic chemistrymolecular magnetismchemistry.chemical_element010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryMagnetDysprosiumPhysical chemistrySingle-molecule magnetPhysical and Theoretical Chemistrysingle-molecule magnetsMetalloceneQuantum tunnellingPi backbondingInorganic chemistry
researchProduct

Coordination Complexes of a Neutral 1,2,4-Benzotriazinyl Radical Ligand: Synthesis, Molecular and Electronic Structures, andMagnetic Properties

2015

A series of d-block metal complexes of the recently reported coordinating neutral radical ligand 1-phenyl-3-(pyrid-2-yl)-1,4-dihydro-1,2,4-benzotriazin-4-yl (1) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5-hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single-crystal X-ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn(1)(hfac)2] and [Fe(1)(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the meta…

Magnetic susceptibility measurementsAntiferromagnetic couplingIron compoundsLigands01 natural sciencesNickelheterosyklitMetal ionsta116Cobalt compoundsChelationChemistryMetal–radical interactionsMagnetismSingle crystal x-ray diffractionRadicals[CHIM.MATE]Chemical Sciences/Material chemistrymetal-radical interactionsradicalsexchange interactionsChemistrykoordinaatiokemiaUnpaired electronPositive ionsMetalsSynthesis (chemical)visual_artradikaalitvisual_art.visual_art_mediumElectronic structureCoordinating propertiesmagneettiset ominaisuudetX ray diffractionRadicalInorganic chemistryRadical interactionsElectronic structureHeterocycles010402 general chemistryCatalysisMagnetic susceptibilityMetalElectronic structure calculationsMetal complexesMagnetic properties[CHIM.COOR]Chemical Sciences/Coordination chemistrymetalli-radikaali -vuorovaikutuksetManganeseheterocycles010405 organic chemistryLigandCrystal structureOrganic ChemistryGeneral ChemistryMagnetic susceptibility0104 chemical sciencesCrystallographyOctahedronFerromagnetismExchange interactionscoordination chemistrySingle crystalsmagnetic propertiesCoordination reactions
researchProduct

Coexistence of long-range antiferromagnetic order and slow relaxation of the magnetization in the first lanthanide complex of a 1,2,4-benzotriazinyl …

2017

The first lanthanide complex of a 1,2,4-benzotriazinyl radical (1), Dy(1)(tbacac)3 (2, tbacac = 2,2,6,6-tetramethyl-3,5-heptane-dionato), was synthesised and found to have an antiferromagnetically ordered ground state with a metamagnetic phase diagram and a critical field of 0.91 T at 1.85 K. The application of a small dc field revealed the single-molecule magnet behaviour of 2, illustrating the coexistence of long-range antiferromagnetic order and slow relaxation of the magnetization. peerReviewed

LanthanideCondensed matter physics010405 organic chemistryChemistryRelaxation (NMR)[CHIM.MATE]Chemical Sciences/Material chemistrykompleksiyhdisteetharvinaiset maametallit010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryMagnetizationMagnetmagnetismAntiferromagnetismcoordination complexesmagnetismiGround staterare earth metalsCritical fieldta116ComputingMilieux_MISCELLANEOUSPhase diagram
researchProduct

Direct observation of a borane–silane complex involved in frustrated Lewis-pair-mediated hydrosilylations

2014

Perfluorarylborane Lewis acids catalyse the addition of silicon–hydrogen bonds across C=C, C=N and C=O double bonds. This ‘metal-free’ hydrosilylation has been proposed to occur via borane activation of the silane Si–H bond, rather than through classical Lewis acid/base adducts with the substrate. However, the key borane/silane adduct had not been observed experimentally. Here it is shown that the strongly Lewis acidic, antiaromatic 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene forms an observable, isolable adduct with ​triethylsilane. The equilibrium for adduct formation was studied quantitatively through variable-temperature NMR spectroscopic investigations. The interacti…

crystal structurehydrosilylointireaktiivinen välituoteborane-silane complexLewisin happo-emäs -parithydrosilylationkiderakenneboraani-silaani -kompleksiLewis acid-base pairsreactive intermediate
researchProduct

Calculation of magnetic coupling constants with hybrid density functionals

2013

The currently available computational methods for the calculation of magnetic coupling constants with density functional theory have been reviewed. These methods include modern approximations to the exchangecorrelation functional, such as hybrid, range-separated and double-hybrid functionals, as well as approaches to treat the severe spin symmetry problems encountered in density functional calculations of magnetic interactions. In addition to the commonly used unrestricted Kohn–Sham formalism, density functional methods based on multireference wave functions and ensemble densities are also discussed. Performance of these models based on various studies has been summarized. The results indic…

kytkentämagnetic couplingmagnetic coupling constantsDFThybrid functionals
researchProduct

Computational Analysis of n→π* Back-Bonding in Metallylene–Isocyanide Complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph)

2013

A detailed computational investigation of orbital interactions in metal–carbon bonds of metallylene–isocyanide adducts of the type R2MCNR′ (M = Si, Ge, Sn; R, R′ = alkyl, aryl) was performed using density functional theory and different methods based on energy decomposition analysis. Similar analyses have not been carried out before for metal complexes of isocyanides, even though the related carbonyl complexes have been under intense investigations throughout the years. The results of our work reveal that the relative importance of π-type back-bonding interactions in these systems increases in the sequence Sn < Ge ≪ Si, and in contrast to some earlier assumptions, the π-component cannot be …

chemistry.chemical_classificationStereochemistryLigandIsocyanideArylOrganic ChemistryAdductInorganic ChemistryMetalchemistry.chemical_compoundCrystallographychemistryvisual_artvisual_art.visual_art_mediumDensity functional theoryPhysical and Theoretical Chemistryta116AlkylPi backbondingOrganometallics
researchProduct

Mono‐ and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bis‐1,4‐([3]Cumulene)‐ p ‐carboquinoid System

2018

An extended π-system containing two [3]cumulene fragments separated by a p-carboquinoid and stabilized by two capping N-heterocyclic carbenes (NHCs) has been prepared. Mono- and bis(imidazolidinium ethynyl) cations have also been synthesized from the reaction of an NHC with phenylethynyl bromide or 1,4-bis(bromoethynyl)benzene. Cyclic voltammetry coupled with synthetic and structural studies showed that the dication is readily reduced to a neutral, singlet bis-1,4-([3]cumulene)-p-carboquinoid as a result of the π-accepting properties of the capping NHCs.

010405 organic chemistryCumuleneGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryCatalysis0104 chemical sciences3. Good healthDicationchemistry.chemical_compoundchemistryBromideX-ray crystallographySinglet stateCyclic voltammetryBenzeneAngewandte Chemie International Edition
researchProduct

A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit

2017

Abstraction of a chloride ligand from the dysprosium metallocene [(Cpttt)2DyCl] (1Dy Cpttt=1,2,4‐tri(tert‐butyl)cyclopentadienide) by the triethylsilylium cation produces the first base‐free rare‐earth metallocenium cation [(Cpttt)2Dy]+ (2Dy) as a salt of the non‐coordinating [B(C6F5)4]− anion. Magnetic measurements reveal that [2Dy][B(C6F5)4] is an SMM with a record anisotropy barrier up to 1277 cm−1 (1837 K) in zero field and a record magnetic blocking temperature of 60 K, including hysteresis with coercivity. The exceptional magnetic axiality of 2Dy is further highlighted by computational studies, which reveal this system to be the first lanthanide SMM in which all low‐lying Kramers doub…

Lanthanidemagneettiset ominaisuudetInorganic chemistrychemistry.chemical_elementanisotropyorganometalliyhdisteet010402 general chemistry01 natural sciencesCatalysisIonchemistry.chemical_compoundorganometallic compoundsdysprosiumSingle-molecule magnetsingle-molecule magnetsta116Group 2 organometallic chemistry010405 organic chemistryGeneral MedicineGeneral Chemistryharvinaiset maametallitCoercivitycyclopentadienyl ligands0104 chemical sciencesCrystallographyHysteresischemistryDysprosiumMetalloceneAngewandte Chemie International Edition
researchProduct

Dynamic Magnetic and Optical Insight into a High Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnet

2017

The pentagonal bipyramidal single-ion magnets (SIMs) are among the most attractive prototypes of high-performance single-molecule magnets (SMMs). Here, a fluorescence-active phosphine oxide ligand CyPh2PO (=cyclohexyl(diphenyl)phosphine oxide) was introduced into [Dy(CyPh2PO)2(H2O)5]Br3⋅2 (CyPh2PO)⋅EtOH⋅3 H2O, and combined dynamic magnetic measurement, optical characterization, ab initio calculation, and magneto-optical correlation of this high-performance pseudo-D5h DyIII SIM with large Ueff (508(2) K) and high magnetic hysteresis temperature (19 K) were performed. This work provides a deeper insight into the rational design of promising molecular magnets. peerReviewed

molecular magnetssingle-molecule magnetsdynamic magnetic measurements
researchProduct

Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet

2018

Breaking through the nitrogen ceiling Single-molecule magnets could prove useful in miniaturizing a wide variety of devices. However, their application has been severely hindered by the need to cool them to extremely low temperature using liquid helium. Guo et al. now report a dysprosium compound that manifests magnetic hysteresis at temperatures up to 80 kelvin. The principles applied to tuning the ligands in this complex could point the way toward future architectures with even higher temperature performance. Science , this issue p. 1400

agnetic propertiesmagneettiset ominaisuudetchemistry.chemical_elementorganometalliyhdisteet010402 general chemistry01 natural sciencesMagnetizationchemistry.chemical_compoundMoleculeSingle-molecule magnetsingle-molecule magnetsrare earth metalsta116MultidisciplinaryCondensed matter physics010405 organic chemistryrganometallic compoundskompleksiyhdisteetmetallocenesharvinaiset maametallitMagnetic hysteresismagnetic hysteresisNanomagnet0104 chemical scienceschemistryMagnetDysprosiumQD0146MetalloceneScience
researchProduct

The Instability of Ni{N(SiMe3)2}2: A Fifty Year Old Transition Metal Silylamide Mystery

2015

The characterization of the unstable NiII bis(silylamide) Ni{N(SiMe3)2}2 (1), its THF complex Ni{N(SiMe3)2}2(THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3)2}2(py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric NiI species, [Ni{N(SiMe3)2}]4 (4), also obtainable from LiN(SiMe3)2 and NiCl2(DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of NiII to NiI and the stabilization of 4 through dispersion forces. peerReviewed

magneettiset ominaisuudetdispersiovuorovaikutussteeriset vuorovaikutuksetmagnetisminikkelidispersion effectsnikkelikompleksitsilyyliamidiligandisilylamidesteric effects
researchProduct

Uranocenium: Synthesis, Structure, and Chemical Bonding

2019

Abstraction of iodide from [(η5 -C5 i Pr5 )2 UI] (1) produced the cationic uranium(III) metallocene [(η5 -C5 i Pr5 )2 U]+ (2) as a salt of [B(C6 F5 )4 ]- . The structure of 2 consists of unsymmetrically bonded cyclopentadienyl ligands and a bending angle of 167.82° at uranium. Analysis of the bonding in 2 showed that the uranium 5f orbitals are strongly split and mixed with the ligand orbitals, thus leading to non-negligible covalent contributions to the bonding. Investigation of the dynamic magnetic properties of 2 revealed that the 5f covalency leads to partially quenched anisotropy and fast magnetic relaxation in zero applied magnetic field. Application of a magnetic field leads to domin…

Materials sciencemagneettiset ominaisuudetElectronic structureorganometalliyhdisteet010402 general chemistry01 natural sciencesCatalysischemistry.chemical_compoundsymbols.namesakekemialliset sidoksetCyclopentadienyl complexkemiallinen synteesi010405 organic chemistryLigandRelaxation (NMR)chemical bondingGeneral MedicineGeneral Chemistrymetalloceneselectronic structure0104 chemical sciencesCrystallographychemistryChemical bonduraaniCovalent bondsymbolsRaman spectroscopyMetalloceneAngewandte Chemie International Edition
researchProduct

Reaction of LiArMe6 (ArMe6= C6H3-2,6-(C6H2-2,4,6-Me3)2) with indium(I)chloride yields three m-terphenyl stabilized mixed-valent organoindium subhalid…

2016

Abstract Indium(I)chloride reacts with LiAr Me 6 ( Ar Me 6  = C6H3-2,6-(C6H2-2,4,6-Me3)2) in THF to give three new mixed-valent organoindium subhalides. While the 1:1 reaction of InCl with LiAr Me 6 yields the known metal-rich cluster In8( Ar Me 6 )4 (1), the use of freshly prepared LiAr Me 6 led to incorporation of iodide, derived from the synthesis of LiAr Me 6 , into the structures, to afford In4( Ar Me 6 )4I2 (2) along with minor amounts of In3( Ar Me 6 )3I2 (3). When the same reaction was performed in 4:3 stoichiometry, the mixed-halide compound In3( Ar Me 6 )3ClI (4) was obtained. Further increasing the chloride:aryl ligand ratio resulted in the formation of the known mixed-halide spe…

chemistry.chemical_classification010405 organic chemistryArylIodideInfrared spectroscopychemistry.chemical_element010402 general chemistry01 natural sciencesChloride0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryComputational chemistryTerphenylX-ray crystallographyMaterials ChemistrymedicinePhysical and Theoretical ChemistryStoichiometryIndiummedicine.drugPolyhedron
researchProduct

Isolation of a perfectly linear uranium(II) metallocene

2020

Reduction of the uranium(III) metallocene [(eta(5)-(C5Pr5)-Pr-i)(2)UI] (1) with potassium graphite produces the "second-generation" uranocene [(eta(5)-(C5Pr5)-Pr-i)(2)U] (2), which contains uranium in the formal divalent oxidation state. The geometry of 2 is that of a perfectly linear bis(cyclopentadienyl) sandwich complex, with the ground-state valence electron configuration of uranium(II) revealed by electronic spectroscopy and density functional theory to be 5f(3) 6d(1). Appreciable covalent contributions to the metal-ligand bonds were determined from a computational study of 2, including participation from the uranium 5f and 6d orbitals. Whereas three unpaired electrons in 2 occupy orbi…

Materials sciencemagneettiset ominaisuudetchemistry.chemical_elementorganometalliyhdisteet010402 general chemistry01 natural sciencesElectron spectroscopyCatalysisuraniumchemistry.chemical_compoundkemialliset sidoksetUranoceneCyclopentadienyl complex010405 organic chemistrychemical bondingGeneral MedicineGeneral ChemistryUraniummetalloceneselectronic structure0104 chemical sciencesCrystallographychemistryUnpaired electronuraaniDensity functional theorymagnetic propertiesQD0146Valence electronMetallocene
researchProduct

Uranium( iv ) cyclobutadienyl sandwich compounds: synthesis, structure and chemical bonding

2019

The 1 : 1 reactions of uranium(IV) tetrakis(borohydride) with the sodium and potassium salts of the cyclobutadienyl anion [C4(SiMe3)4]2− (Cb′′′′) produce the half-sandwich complexes [Na(12-crown-4)2][U(η4-Cb′′′′)(BH4)3] and [U(η4-Cb′′′′)(μ-BH4)3{K(THF)2}]2. In the 1 : 2 reaction of U(BH4)4 with Na2Cb′′′′, formation of [U(η4-Cb′′′′)(η3-C4H(SiMe3)3-κ-(CH2SiMe2)(BH4))]− reveals that a Cb′′′′ ligand undergoes an intramolecular deprotonation, resulting in an allyl/tuck-in bonding mode. A computational study reveals that the uranium–Cb′′′′ bonding has an appreciable covalent component with contributions from the uranium 5f and 6d orbitals. peerReviewed

chemistry.chemical_element010402 general chemistryBorohydride01 natural sciencesMedicinal chemistryCatalysisIonkemialliset sidoksetchemistry.chemical_compoundDeprotonationMaterials Chemistrykemiallinen synteesi010405 organic chemistryLigandChemistryMetals and AlloyskompleksiyhdisteetGeneral ChemistryUranium3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsuraaniChemical bondCovalent bondIntramolecular forceCeramics and CompositesChemical Communications
researchProduct

Nickel as a Lewis Base in a T‐Shaped Nickel(0) Germylene Complex Incorporating a Flexible Bis(NHC) Ligand

2018

Flexible, chelating bis(NHC) ligand 2, able to accommodate both cis- and trans-coordination modes, was used to synthesize (2)Ni(η 2 -cod), 3. In reaction with GeCl2, this produced (2)NiGeCl2, 4, featuring a T-shaped Ni(0) and a pyramidal Ge center. Complex 4 could also be prepared from [(2)GeCl]Cl, 5, and Ni(cod)2, in a reaction that formally involved Ni-Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ-donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2Ni(cod) complexes 9 and 10, as well as (NHC)2GeCl2 derivative 11, incor…

chemistry.chemical_elementBite angleorganometalliyhdisteet010402 general chemistry01 natural sciencesCatalysisTransmetalationchemistry.chemical_compoundnickelPolymer chemistryMoietyChelationLewis acids and basesN-heterocyclic carbenesta116010405 organic chemistryLigandGeneral MedicineGeneral Chemistrykompleksiyhdisteet0104 chemical sciencesT-geometryNickelgermaniummetal-only Lewis pairschemistrynikkeliDerivative (chemistry)Angewandte Chemie International Edition
researchProduct

Thermal expansion and magnetic properties of benzoquinone-bridged dinuclear rare-earth complexes.

2017

The synthesis and structural characterization of two benzoquinone-bridged dinuclear rare-earth complexes [BQ(MCl2·THF3)2] (BQ = 2,5-bisoxide-1,4-benzoquinone; M = Y (1), Dy (2)) are described. Of these reported metal complexes, the dysprosium analogue 2 is the first discrete bridged dinuclear lanthanide complex in which both metal centres reside in pentagonal bipyramidal environments. Interestingly, both complexes undergo significant thermal expansion upon heating from 120 K to 293 K as illustrated by single-crystal X-ray and powder diffraction experiments. AC magnetic susceptibility measurements reveal that 2 does not show the slow relation of magnetization in zero dc field. The absent of …

Lanthanidemagneettiset ominaisuudetStereochemistrychemistry.chemical_element010402 general chemistry01 natural sciencesInorganic ChemistryMagnetizationPentagonal bipyramidal molecular geometryAb initio quantum chemistry methodsheat expansioncoordination complexesrare earth metalsta116010405 organic chemistrykompleksiyhdisteetharvinaiset maametallitBenzoquinoneMagnetic susceptibility0104 chemical sciencesCrystallographychemistryDysprosiummagnetic propertiesPowder diffractionlämpölaajeneminenDalton transactions (Cambridge, England : 2003)
researchProduct

CCDC 1966630: Experimental Crystal Structure Determination

2019

Related Article: Nikolaos Tsoureas, Akseli Mansikkamäki, Richard A. Layfield|2020|Chem.Commun.|56|944|doi:10.1039/C9CC09018E

Space GroupCrystallographytetrakis(2-methoxy-2-methylpropane)-sodium tris(2-methoxy-2-methylpropane)-tetrahydrofuran-sodium ((cyclobuta-13-diene-1234-tetrayl)tetrakis(trimethylsilane))-(3-[methyl(dimethyl)silyl]-124-tris(trimethylsilyl)cyclobut-2-en-1-yl)-tetrahydridoborato-uraniumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1401116: Experimental Crystal Structure Determination

2015

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

Space GroupCrystallographyCrystal SystemCrystal Structurebis(Pyridine)-(trimethylsilylamido(dimethyl)silylmethyl-CN)-nickelCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1549500: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

2-{[4-(chloroethynyl)phenyl]ethynyl}-13-bis[26-bis(propan-2-yl)phenyl]-45-dihydro-1H-imidazol-3-ium 2-{[4-(bromoethynyl)phenyl]ethynyl}-13-bis[26-bis(propan-2-yl)phenyl]-45-dihydro-1H-imidazol-3-ium tetraphenylborate dichloromethane solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1401114: Experimental Crystal Structure Determination

2015

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(Pyridine)-bis(bis(trimethylsilyl)amide)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1424396: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(bis(diphenylphosphorothioyl)methanethiolato)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1424395: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

bis(bis(diphenylphosphorothioyl)methanethiolato)-nickel(ii) toluene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1057508: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

Space GroupCrystallographyCrystal SystemCrystal Structurebis(111555-Hexafluoroacetylacetonato-OO')-(1-phenyl-3-(pyridin-2-yl)-124-benzotriazin-4(1H)-yl radical)-cobalt(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1861477: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters111-di-t-butyl-12-chloro-671111a1212a-hexahydro-1H5H-diimidazo[12-a:2'1'-d][153]diazagermocin-12-ylium chlorideExperimental 3D Coordinates
researchProduct

CCDC 1854466: Experimental Crystal Structure Determination

2018

Related Article: Fu-Sheng Guo, Benjamin M. Day, Yan-Cong Chen, Ming-Liang Tong, Akseli Mansikkamäki, Richard A. Layfield|2018|Science|362|1400|doi:10.1126/science.aav0652

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(eta5-pentaisopropylcyclopentadienyl)-bis(tetrahydroborate)-tetrahydrofuran-dysprosium(iii)Experimental 3D Coordinates
researchProduct

CCDC 1861476: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal Structure(11'-(propane-13-diyl)bis(3-t-butyl-imidazol-2-ylidene))-(cycloocta-15-diene)-nickel(0)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1854468: Experimental Crystal Structure Determination

2018

Related Article: Fu-Sheng Guo, Benjamin M. Day, Yan-Cong Chen, Ming-Liang Tong, Akseli Mansikkamäki, Richard A. Layfield|2018|Science|362|1400|doi:10.1126/science.aav0652

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(eta5-pentamethylcyclopentadienyl)-(eta5-pentaisopropylcyclopentadienyl)-dysprosium tetrakis(pentafluorophenyl)borateExperimental 3D Coordinates
researchProduct

CCDC 1057512: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

Space GroupCrystallographyCrystal System1-Phenyl-3-(pyridin-2-yl)-14-dihydro-124-benzotriazineCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1854972: Experimental Crystal Structure Determination

2019

Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea,  Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1

(45-bis(26-diisopropylanilido)-27-di-t-butyl-99-dimethylxanthene)-(tris(t-butyl)phosphine)-gold-aluminium benzene solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833613: Experimental Crystal Structure Determination

2018

Related Article: Alexander F. R. Kilpatrick, Fu-Sheng Guo, Benjamin M. Day, Akseli Mansikkamäki, Richard A. Layfield, F. Geoffrey N. Cloke|2018|Chem.Commun.|54|7085|doi:10.1039/C8CC03516D

Space GroupCrystallographyCrystal System(mu-(pentalene-14-diyl)bis(tri(propan-2-yl)silane))-(eta5-pentamethylcyclopentadienyl)-dysprosium(iii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1966628: Experimental Crystal Structure Determination

2019

Related Article: Nikolaos Tsoureas, Akseli Mansikkamäki, Richard A. Layfield|2020|Chem.Commun.|56|944|doi:10.1039/C9CC09018E

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(14710-tetraoxacyclododecane-O1O4O7O10)-sodium ((cyclobuta-13-diene-1234-tetrayl)tetrakis(trimethylsilane)) tris(tetrahydridoborato)-uraniumExperimental 3D Coordinates
researchProduct

CCDC 1955099: Experimental Crystal Structure Determination

2019

Related Article: Richard Layfield, Fu-Sheng Guo, Nikolaus Tsoureas, Guo-Zhang Huang, Ming-Liang Tong, Akseli Mansikkamäki|2020|Angew.Chem.,Int.Ed.|59|2299|doi:10.1002/anie.201912663

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(pentakis(isopropyl)cyclopentadienyl)-uranium(ii) benzene solvateExperimental 3D Coordinates
researchProduct

CCDC 1861475: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1414-dichloro-113-bis[26-bis(propan-2-yl)phenyl]-6688-tetramethyl-56891313a1414a-octahydro-1H-diimidazo[12-d:2'1'-g][1482106]oxadiazadisilastannecine tetrahydrofuran unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1555899: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis[12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato]-chromium(ii) toluene solvateExperimental 3D Coordinates
researchProduct

CCDC 1861479: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal Structurebis[13-bis(22-dimethylpropyl)-23-dihydro-1H-132-diazagermol-2-yl]-bis[13-bis(22-dimethylpropyl)-23-dihydro-1H-132-diazagermol-2-yl]-nickelCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1828738: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato)-di-sodium hexane solvateExperimental 3D Coordinates
researchProduct

CCDC 1549501: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters22'-[cyclohexa-25-diene-14-diylidenebis(ethene-21-diylidene)]bis{13-bis[26-bis(propan-2-yl)phenyl]imidazolidine}Experimental 3D Coordinates
researchProduct

CCDC 1555900: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis[121416323436-hexamethyl[1121:2331-terphenyl]-22-thiolato]-chromium(ii) unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1519804: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-amino-6-[(3-aminopyrazin-2-yl)sulfanyl]-1-methylpyridin-1-ium trifluoromethanesulfonate acetonitrile solvate
researchProduct

CCDC 1518784: Experimental Crystal Structure Determination

2017

Related Article: Juha Hurmalainen, Akseli Mansikkamäki, Ian S. Morgan, Anssi Peuronen, Heikki M. Tuononen|2017|Dalton Trans.|46|1377|doi:10.1039/C6DT04504A

Space GroupCrystallographyCrystal SystemCrystal Structure1414-dichloro-14lambda5-quinolino[1'2':34][132]diazaborolo[15-a]quinoline radicalCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1427361: Experimental Crystal Structure Determination

2015

Related Article: Felicitas Lips, James C. Fettinger, Akseli Mansikkamäki, Heikki M. Tuononen, and Philip P. Power|2014|J.Am.Chem.Soc.|136|634|doi:10.1021/ja411951y

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11-bis((22''66''-tetraisopropyl-11':3'1''-terphenyl-2'-yl)sulfanyl)silirane toluene solvateExperimental 3D Coordinates
researchProduct

CCDC 1401113: Experimental Crystal Structure Determination

2015

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersTetrahydrofuran-bis(bis(trimethylsilyl)amide)-nickel(ii)Experimental 3D Coordinates
researchProduct

CCDC 1519805: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-amino-1-methyl-6-[(3-sulfanylidene-34-dihydropyrazin-2-yl)amino]pyridin-1-ium trifluoromethanesulfonateExperimental 3D Coordinates
researchProduct

CSD 1953092: Experimental Crystal Structure Determination

2020

Related Article: Richard Layfield, Fu-Sheng Guo, Nikolaus Tsoureas, Guo-Zhang Huang, Ming-Liang Tong, Akseli Mansikkamäki|2020|Angew.Chem.,Int.Ed.|59|2299|doi:10.1002/anie.201912663

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1549502: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters13-bis[26-bis(propan-2-yl)phenyl]-2-(phenylethynyl)-45-dihydro-1H-imidazol-3-ium hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1854971: Experimental Crystal Structure Determination

2019

Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea,  Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-[(propan-2-yl)azanidyl][(propan-2-yl)imino]methyl)-(45-bis(26-diisopropylanilido)-27-di-t-butyl-99-dimethylxanthene)-(tris(t-butyl)phosphine)-aluminium-gold benzene solvateExperimental 3D Coordinates
researchProduct

CCDC 1536800: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallography2-amino-6-[(3-aminoquinoxalin-2-yl)sulfanyl]-1-methylpyridin-1-ium trifluoromethanesulfonateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833614: Experimental Crystal Structure Determination

2018

Related Article: Alexander F. R. Kilpatrick, Fu-Sheng Guo, Benjamin M. Day, Akseli Mansikkamäki, Richard A. Layfield, F. Geoffrey N. Cloke|2018|Chem.Commun.|54|7085|doi:10.1039/C8CC03516D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-(pentalene-14-diyl)bis(tri(propan-2-yl)silane))-(eta5-pentamethylcyclopentadienyl)-yttrium(iii)Experimental 3D Coordinates
researchProduct

CCDC 1854973: Experimental Crystal Structure Determination

2019

Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea,  Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1

Space GroupCrystallography(mu-iodo)-bis(triphenylphosphine)-(45-bis(26-diisopropylanilido)-27-di-t-butyl-99-dimethylxanthene)-di-gold-aluminium diethyl ether solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1400650: Experimental Crystal Structure Determination

2015

Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu2-Chloro)-iodo-tris(22''44''66''-hexamethyl-11':3'1''-terphenyl)-indium(i)-di-indium(ii)Experimental 3D Coordinates
researchProduct

CCDC 1861473: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

(11'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{3-[26-bis(propan-2-yl)phenyl]-imidazol-2-ylidene})-dichloro-germanium-nickel(0) toluene unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1035161: Experimental Crystal Structure Determination

2014

Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-Phenyl-11-bis((22''66''-tetraisopropyl-11':3'1''-terphenyl-2'-yl)sulfanyl)-1H-silirene toluene solvateExperimental 3D Coordinates
researchProduct

CCDC 1010911: Experimental Crystal Structure Determination

2014

Related Article: Adrian Y. Houghton, Juha Hurmalainen, Akseli Mansikkamäki, Warren E. Piers, Heikki M. Tuononen|2014|Nature Chemistry|6|983|doi:10.1038/nchem.2063

Space GroupCrystallography4567-tetrafluoro-123-tris(pentafluorophenyl)-1H-1-triethylsilyl-1-benzoboroleCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1035162: Experimental Crystal Structure Determination

2014

Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x

23-Diphenyl-11-bis((22''66''-tetraisopropyl-11':3'1''-terphenyl-2'-yl)sulfanyl)-1H-silireneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1861471: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters33'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{1-[26-bis(propan-2-yl)phenyl]-1H-imidazol-3-ium} diiodideExperimental 3D Coordinates
researchProduct

CCDC 1519259: Experimental Crystal Structure Determination

2017

Related Article: Yan-Cong Chen, Jun-Liang Liu, Yan-Hua Lan, Zhi-Qiang Zhong, Akseli Mansikkamäki, Liviu Ungur, Quan-Wen Li, Jian-Hua Jia, Liviu F. Chibotaru, Jun-Bo Han, Wolfgang Wernsdorfer, Xiao-Ming Chen, and Ming-Liang Tong|2017|Chem.-Eur.J.|23|5708|doi:10.1002/chem.201606029

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterspenta-aqua-bis(cyclohexyl(diphenyl)phosphine oxide)-dysprosium(iii) tribromide bis(cyclohexyl(diphenyl)phosphine oxide) ethanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1057511: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN'-Diphenylpyridine-2-carbohydrazonamideExperimental 3D Coordinates
researchProduct

CCDC 1840738: Experimental Crystal Structure Determination

2018

Related Article: Benjamin M. Day, Fu-Sheng Guo, Sean R. Giblin, Akira Sekiguchi, Akseli Mansikkamäki, Richard A. Layfield|2018|Chem.-Eur.J.|24|16779|doi:10.1002/chem.201804776

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-eta4eta4-1234-tetrakis(trimetylsilyl)cyclobutadienide)-(mu-eta4eta4-(dimethyl(234-tris(trimethylsilyl)cyclobuta-13-dien-1-yl)silyl)methyl)-(eta6-toluene)-di-potassium-yttriumExperimental 3D Coordinates
researchProduct

CCDC 1549499: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

Space GroupCrystallographyCrystal System22'-(14-phenylenedi(ethyne-21-diyl))bis(13-bis[26-di(propan-2-yl)phenyl]-45-dihydro-1H-imidazol-3-ium) bis(bromide) dichloromethane solvate dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1057510: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

Space GroupCrystallographyCrystal SystemCrystal StructureN-Phenylpyridine-2-carbothioamideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1035163: Experimental Crystal Structure Determination

2014

Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters34-Dimethyl-11-bis((22''66''-tetraisopropyl-11':3'1''-terphenyl-2'-yl)sulfanyl)-25-dihydro-1H-silole toluene solvateExperimental 3D Coordinates
researchProduct

CCDC 1519808: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters78-dichloro-4-methyl-4H-[123]dithiazolo[5'4':56]pyrido[32-b]pyrazino[23-e][14]thiazin-2-ium trifluoromethanesulfonateExperimental 3D Coordinates
researchProduct

CCDC 1861472: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal System(11'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{3-[26-bis(propan-2-yl)phenyl]-imidazol-2-ylidene})-(cycloocta-15-diene)-nickel(0)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1555898: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis[12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato]-cobalt(ii)Experimental 3D Coordinates
researchProduct

CCDC 1861474: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(11'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{3-[26-bis(propan-2-yl)phenyl]-imidazol-2-ylidene})-chloro-germanium chloride unknown solvate
researchProduct

CCDC 1486829: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(bis(diphenylphosphorothioyl)methanethiolato)-zinc(ii)Experimental 3D Coordinates
researchProduct

CCDC 1861478: Experimental Crystal Structure Determination

2018

Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(11'-[(1133-tetramethyldisiloxane-13-diyl)bis(methylene)]bis{3-[26-bis(propan-2-yl)phenyl]-imidazol-2-ylidene})-pyridine-nickel(0) unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1549503: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

Space GroupCrystallography13-bis[26-bis(propan-2-yl)phenyl]-2-[(4-fluorophenyl)ethynyl]-45-dihydro-1H-imidazol-3-ium hexafluorophosphate dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1555903: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis[12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato]-manganese(ii)Experimental 3D Coordinates
researchProduct

CCDC 1057507: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

bis(111555-Hexafluoroacetylacetonato-OO')-(1-phenyl-3-(pyridin-2-yl)-124-benzotriazin-4(1H)-yl radical)-iron(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1519806: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters8-chloro-4-methyl-4H-[123]dithiazolo[5'4':56]pyrido[32-b][14]benzothiazin-2-ium trifluoromethanesulfonateExperimental 3D Coordinates
researchProduct

CCDC 1427362: Experimental Crystal Structure Determination

2015

Related Article: Felicitas Lips, James C. Fettinger, Akseli Mansikkamäki, Heikki M. Tuononen, and Philip P. Power|2014|J.Am.Chem.Soc.|136|634|doi:10.1021/ja411951y

Space GroupCrystallography33-bis((22''44''66''-hexamethyl-11':3'1''-terphenyl-2'-yl)sulfanyl)-3-silatricyclo[3.2.1.024]oct-6-ene toluene solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CSD 1953094: Experimental Crystal Structure Determination

2020

Related Article: Richard Layfield, Fu-Sheng Guo, Nikolaus Tsoureas, Guo-Zhang Huang, Ming-Liang Tong, Akseli Mansikkamäki|2020|Angew.Chem.,Int.Ed.|59|2299|doi:10.1002/anie.201912663

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1966629: Experimental Crystal Structure Determination

2019

Related Article: Nikolaos Tsoureas, Akseli Mansikkamäki, Richard A. Layfield|2020|Chem.Commun.|56|944|doi:10.1039/C9CC09018E

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatestetrakis(mu-tetrahydridoborato)-bis(tetrahydridoborato)-bis((cyclobuta-13-diene-1234-tetrayl)tetrakis(trimethylsilane))-tetrakis(tetrahydrofuran)-di-potassium-di-uranium
researchProduct

CCDC 1424394: Experimental Crystal Structure Determination

2016

Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu-bis(diphenylphosphorothioyl)methanethiolato)-di-lithiumExperimental 3D Coordinates
researchProduct

CCDC 1536801: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-amino-1-methyl-6-[(3-sulfanylidene-34-dihydroquinoxalin-2-yl)amino]pyridin-1-ium trifluoromethanesulfonate
researchProduct

CCDC 1420621: Experimental Crystal Structure Determination

2015

Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052

Space GroupCrystallographyCrystal Systembis(mu2-Iodo)-tris(22''44''66''-hexamethyl-11':3'1''-terphenyl)-tetrahydrofuran-indium(i)-di-indium(ii) tetrahydrofuran solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1854974: Experimental Crystal Structure Determination

2019

Related Article: Jamie Hicks, Akseli Mansikkamäki, Petra Vasko, Jose M. Goicoechea,  Simon Aldridge|2019|Nature Chemistry|11|237|doi:10.1038/s41557-018-0198-1

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-formato)-(tris(t-butyl)phosphine)-(45-bis(26-diisopropylanilido)-27-di-t-butyl-99-dimethylxanthene)-gold-aluminium benzene solvateExperimental 3D Coordinates
researchProduct

CCDC 1057506: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

bis(111555-Hexafluoroacetylacetonato-OO')-(1-phenyl-3-(pyridin-2-yl)-124-benzotriazin-4(1H)-yl radical)-manganese(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1557625: Experimental Crystal Structure Determination

2017

Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C

Space GroupCrystallography25-bis[(trimethylsilyl)oxy]cyclohexa-25-diene-14-dioneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1555901: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal Structurebis[12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato]-zinc(ii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1840737: Experimental Crystal Structure Determination

2018

Related Article: Benjamin M. Day, Fu-Sheng Guo, Sean R. Giblin, Akira Sekiguchi, Akseli Mansikkamäki, Richard A. Layfield|2018|Chem.-Eur.J.|24|16779|doi:10.1002/chem.201804776

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-eta4eta4-1234-tetrakis(trimetylsilyl)cyclobutadienide)-(mu-eta4eta4-(dimethyl(234-tris(trimethylsilyl)cyclobuta-13-dien-1-yl)silyl)methyl)-(eta6-toluene)-dysprosium-di-potassiumExperimental 3D Coordinates
researchProduct

CCDC 1519807: Experimental Crystal Structure Determination

2017

Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A

Space GroupCrystallographyCrystal System8-chloro-4-methyl-3H4H-[123]dithiazolo[5'4':56]pyrido[32-b][14]benzothiazine radicalCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1557624: Experimental Crystal Structure Determination

2017

Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(mu-36-dioxocyclohexa-14-diene-14-bis(olato))-tetrachloro-hexakis(tetrahydrofuran)-di-dysprosium(iii)Experimental 3D Coordinates
researchProduct

CSD 1953093: Experimental Crystal Structure Determination

2020

Related Article: Richard Layfield, Fu-Sheng Guo, Nikolaus Tsoureas, Guo-Zhang Huang, Ming-Liang Tong, Akseli Mansikkamäki|2020|Angew.Chem.,Int.Ed.|59|2299|doi:10.1002/anie.201912663

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1557623: Experimental Crystal Structure Determination

2017

Related Article: Jani O. Moilanen, Akseli Mansikkamäki, Manu Lahtinen, Fu-Sheng Guo, Elina Kalenius, Richard A. Layfield, Liviu F. Chibotaru|2017|Dalton Trans.|46|13582|doi:10.1039/C7DT02565C

Space GroupCrystallographyCrystal SystemCrystal Structure(mu-36-dioxocyclohexa-14-diene-14-bis(olato))-tetrachloro-hexakis(tetrahydrofuran)-di-yttrium(iii)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1400651: Experimental Crystal Structure Determination

2015

Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(mu2-Iodo)-tetrakis(22''44''66''-hexamethyl-11':3'1''-terphenyl)-di-indium(i)-di-indium(ii) n-hexane solvateExperimental 3D Coordinates
researchProduct

CCDC 1555902: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

bis[12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato]-nickel(ii)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1401115: Experimental Crystal Structure Determination

2015

Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetrakis(mu2-bis(Trimethylsilyl)amide)-tetra-nickelExperimental 3D Coordinates
researchProduct

CCDC 1549498: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

Space GroupCrystallographyCrystal System13-bis[26-bis(propan-2-yl)phenyl]-2-(phenylethynyl)-45-dihydro-1H-imidazol-3-ium bromide toluene solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1854467: Experimental Crystal Structure Determination

2018

Related Article: Fu-Sheng Guo, Benjamin M. Day, Yan-Cong Chen, Ming-Liang Tong, Akseli Mansikkamäki, Richard A. Layfield|2018|Science|362|1400|doi:10.1126/science.aav0652

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(eta5-pentaisopropylcyclopentadienyl)-(eta5-pentamethylcyclopentadienyl)-(tetrahydroborate)-dysprosium(iii)Experimental 3D Coordinates
researchProduct

CCDC 1549504: Experimental Crystal Structure Determination

2017

Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031

Space GroupCrystallographyCrystal SystemCrystal Structure2-[([11'-biphenyl]-4-yl)ethynyl]-13-bis[26-bis(propan-2-yl)phenyl]-45-dihydro-1H-imidazol-3-ium bromide dichloromethane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1840739: Experimental Crystal Structure Determination

2018

Related Article: Benjamin M. Day, Fu-Sheng Guo, Sean R. Giblin, Akira Sekiguchi, Akseli Mansikkamäki, Richard A. Layfield|2018|Chem.-Eur.J.|24|16779|doi:10.1002/chem.201804776

(eta6-toluene)-(eta3-1234-tetrakis(trimethylsilyl)cyclobut-2-en-1-yl)-potassiumSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1840736: Experimental Crystal Structure Determination

2018

Related Article: Benjamin M. Day, Fu-Sheng Guo, Sean R. Giblin, Akira Sekiguchi, Akseli Mansikkamäki, Richard A. Layfield|2018|Chem.-Eur.J.|24|16779|doi:10.1002/chem.201804776

Space GroupCrystallography(mu-eta4eta4-1234-tetrakis(trimetylsilyl)cyclobutadienide)-di-potassiumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1563199: Experimental Crystal Structure Determination

2017

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen|2017|Dalton Trans.|46|12790|doi:10.1039/C7DT02766D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstris(acetylacetonato)-(1-phenyl-3-(pyridin-2-yl)-124-benzotriazin-4(1H)-yl radical)-dysprosium(iii)Experimental 3D Coordinates
researchProduct

CCDC 1519258: Experimental Crystal Structure Determination

2017

Related Article: Yan-Cong Chen, Jun-Liang Liu, Yan-Hua Lan, Zhi-Qiang Zhong, Akseli Mansikkamäki, Liviu Ungur, Quan-Wen Li, Jian-Hua Jia, Liviu F. Chibotaru, Jun-Bo Han, Wolfgang Wernsdorfer, Xiao-Ming Chen, and Ming-Liang Tong|2017|Chem.-Eur.J.|23|5708|doi:10.1002/chem.201606029

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterspenta-aqua-bis(cyclohexyl(diphenyl)phosphine oxide)-yttrium(iii) penta-aqua-bis(cyclohexyl(diphenyl)phosphine oxide)-dysprosium(iii) tribromide bis(cyclohexyl(diphenyl)phosphine oxide) ethanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1555896: Experimental Crystal Structure Determination

2018

Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesbis[12163236-tetrakis(propan-2-yl)[1121:2331-terphenyl]-22-thiolato]-iron(ii)
researchProduct

CCDC 1057509: Experimental Crystal Structure Determination

2015

Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343

Space GroupCrystallographyCrystal Systembis(111555-Hexafluoroacetylacetonato-OO')-(1-phenyl-3-(pyridin-2-yl)-124-benzotriazin-4(1H)-yl radical)-nickel(ii)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1518783: Experimental Crystal Structure Determination

2017

Related Article: Juha Hurmalainen, Akseli Mansikkamäki, Ian S. Morgan, Anssi Peuronen, Heikki M. Tuononen|2017|Dalton Trans.|46|1377|doi:10.1039/C6DT04504A

Space GroupCrystallography1414-dichloroquinolino[1'2':34][132]diazaborolo[15-a]quinolinium chlorideCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Theoretical and computational studies of magnetic anisotropy and exchange coupling in molecular systems

2018

The field of molecular magnetism studies the magnetic properties of molecular systems as opposed to conventional metal-based magnets. The high chemical modifiability of the constituting molecules makes such materials highly versatile, and the small size of the building blocks leads to the rise of various quantum mechanical phenomena, such as tunneling and entanglement. These phenomena can then be further utilized in the construction of nanoscale quantum devices. This dissertation describes computational and theoretical studies in the field of molecular magnetism using state-of-the-art quantum chemical methods based on ab initio multireference approaches and broken symmetry density functional t…

organic magnetsmagnetic anisotropymagneettiset ominaisuudetCASPT2tiheysfunktionaaliteoriamolecular magnetismexchange interactionmolekyylitkompleksiyhdisteetorganometalliyhdisteetCASSCFDFTspin-orbit couplingquantum chemistrybroken symmetry DFTkvanttikemiaendohedral metallo-fullereneslanthanidessingle-molecule magnetsmagnetismiNEVPT2orgaaniset yhdisteet
researchProduct