0000000001032844
AUTHOR
Klaudia Radula-janik
DFT and experimental studies on structure and spectroscopic parameters of 3,6-diiodo-9-ethyl-9H-carbazole
The first report on crystal and molecular structure of 3,6-diiodo-9-ethyl-9H-carbazole is presented. Experimental room-temperature X-ray and 13C chemical shift studies were supported by advanced theoretical calculations using density functional theory (DFT). The 13C nuclear magnetic shieldings were predicted at the non-relativistic and relativistic level of theory using the zeroth-order regular approximation (ZORA). Theoretical relativistic calculations of chemical shifts of carbons C3 and C6, directly bonded to iodine atoms, produced a reasonable agreement with experiment (initial deviation from experiment of 44.3 dropped to 4.25 ppm). The changes in ring aromatic character via simple harm…
Molecular modeling and experimental studies on structure and NMR parameters of 9-benzyl-3,6-diiodo-9H-carbazole
A combined experimental and theoretical study has been performed on 9-benzyl-3,6-diiodo-9H-carbazole. Experimental X-ray (100.0 K) and room-temperature 13C NMR studies were supported by advanced density functional theory (DFT) calculations. The non relativistic structure optimization was performed and the 13C nuclear magnetic shieldings were predicted at the relativistic level of theory using the Zeroth Order Regular Approximation (ZORA). The changes in the benzene and pyrrole rings compared to the unsubstituted carbazole or the parent molecules were discussed in terms of aromaticity changes using the harmonic oscillator model of aromaticity (HOMA) and the nucleus independent chemical shift…
Dynamic Polarizability and Higher-Order Electric Properties of Fluorene, Carbazole, and Dibenzofuran
Static electric properties, from the dipole moment to the second-hyperpolarizability tensor γ, of the 3-membered, isoelectronic ring molecules, fluorene (FL), carbazole (CR), and dibenzofuran (DBF), have been calculated at various levels of approximation. The electron correlation effects have been included at the coupled-cluster (CC) level, using CCSD and CC2 versions of the method. DFT calculations with the CAM-B3LYP functional have also been performed, and the results are compared to the CC values. The electric property-tailored Pol basis set and its more compact Z3Pol version have been employed in all static calculations. Differences between dipole polarizability values computed at the P…
3 He NMR studies on helium-pyrrole, helium-indole, and helium-carbazole systems: a new tool for following chemistry of heterocyclic compounds
The 3He nuclear magnetic shieldings were calculated for free helium atom and He–pyrrole, He–indole, and He–carbazole complexes. Several levels of theory, including Hartree–Fock (HF), Second-order Moller-Plesset Perturbation Theory (MP2), and Density Functional Theory (DFT) (VSXC, M062X, APFD, BHandHLYP, and mPW1PW91), combined with polarization-consistent pcS-2 and aug-pcS-2 basis sets were employed. Gauge-including atomic orbital (GIAO) calculated 3He nuclear magnetic shieldings reproduced accurately previously reported theoretical values for helium gas. 3He nuclear magnetic shieldings and energy changes as result of single helium atom approaching to the five-membered ring of pyrrole, indo…
Halogen effect on structure and 13 C NMR chemical shift of 3,6-disubstituted-N -alkyl carbazoles
Structures of selected 3,6-dihalogeno-N-alkyl carbazole derivatives were calculated at the B3LYP/6-311++G(3df,2pd) level of theory, and their 13C nuclear magnetic resonance (NMR) isotropic shieldings were predicted using density functional theory (DFT). The model compounds contained 9H, N-methyl and N-ethyl derivatives. The relativistic effect of Br and I atoms on nuclear shieldings was modeled using the spin–orbit zeroth-order regular approximation (ZORA) method. Significant heavy atom shielding effects for the carbon atom directly bonded with Br and I were observed (~−10 and ~−30 ppm while the other carbon shifts were practically unaffected). The decreasing electronegativity of the haloge…
Molecular modeling and experimental studies on structure and NMR parameters of 9-benzyl-3,6-diiodo-9<i>H</i>-carbazole
Substituent effect of nitro group on aromaticity of carbazole rings
The molecular geometries of carbazole and its 17 nitro derivatives were optimized at the B3LYP/6-311++G(2d,2p) level of theory. The harmonic oscillator model of aromaticity and nucleus-independent chemical shift descriptors of π-electron delocalization were calculated to estimate the aromaticity of the carbazole five- and six-membered rings. The biggest changes in the value of both descriptors were observed for the pyrrole ring. The nitro group attached to 3 and/or 6 positions of the carbazole ring system exerts only a slight influence on the benzene ring aromaticity.
From small to medium and beyond: a pragmatic approach in predicting properties of Ne containing structures
In this study, we outlined a pragmatic approach for structural studies leading to better understanding of polycarbon structures using 21Ne as a nuclear magnetic resonance (NMR) probe. 21Ne NMR parameters of a single neon atom and its dimer were predicted at the CCSD(T) level in combination with large basis sets. At a lower level of theory, an interaction of neon atom with 1,3-cyclopentadiene ring and with five- and six-membered rings in carbazole was studied using the restricted Hartree–Fock (RHF) and density functional theory (DFT) combined with smaller basis sets. The RHF and DFT modelling of neon interaction with nanosized objects were performed on cyclacenes and selected fullerenes.
CCDC 990604: Experimental Crystal Structure Determination
Related Article: Klaudia Radula-Janik, Teobald Kupka, Krzysztof Ejsmont, Zdzisław Daszkiewicz, Stephan P. A. Sauer|2015|Struct.Chem.|26|997|doi:10.1007/s11224-014-0554-8
CCDC 1051894: Experimental Crystal Structure Determination
Related Article: Klaudia Radula-Janik, Teobald Kupka , Krzysztof Ejsmont, Zdzisław Daszkiewicz, Stephan P. A. Sauer|2016|Struct.Chem.|27|199|doi:10.1007/s11224-015-0711-8