0000000001063823

AUTHOR

Joachim Barth

Magnetic Transitions in the Double Perovskite Sr2FeRe1-xFexO6(0≤X≤0.5)

AbstractThe synthesis, structure, and magnetic and transport properties of solid solutions Sr2FeRe1-xFexO6 (0≤x≤0.5) are reported. A structural evolution in the solid solutions from a double perovskite to perovskite is observed with increasing Fe/Re disorder. Except for the metallic parent compound all members of the series are semiconducting. For the Fe-doped samples a change from ferrimagnetic interactions in the parent compound to a complex superposition of ferrimagnetic and antiferromagnetic interactions was observed. The magnetic moment decreases with x, whereas the Curie temperature TC remains unaffected. The magnetic and Mössbauer data suggest Fe to act as a redox-buffer.

research product

Anomalous transport properties of the half-metallic ferromagnets Co 2 TiSi, Co 2 TiGe and Co 2 TiSn

In this work the theoretical and experimental investigations of Co2TiZ (Z = Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is predicted for all three compounds with only two bands crossing the Fermi energy in the majority channel. The magnetic moments fulfill the Slater-Pauling rule and the Curie temperatures are well above room temperature. All compounds show a metallic like resistivity for low temperatures up to their Curie temperature, above the resistivity changes to semiconducting like behavior. A large negative magnetoresistance of 55% is observed for Co2TiSn at room temperature in an applied magnetic field of 4T which is comparable to the large negative magnetore…

research product

Thermoelectric properties of CoTiSb based compounds

Several CoTiSb based compounds were synthesized and investigated on their thermoelectric properties. The aim was to improve the thermoelectric properties of CoTiSb by the systematic substitution of atoms or the introduction of additional Co into the vacant sublattice. The solid solutions Co1+xTiSb, Co1?yCuyTiSb and CoTiSb1?zBiz were synthesized. X-ray diffraction was used to investigate the crystal structure. The resistivity, the Seebeck coefficient and the thermal conductivity were determined for all compounds in the temperature range from 2 to 400?K. The highest figure of merit for each solid solution is presented. We were able to improve the figure of merit by a factor of approximately s…

research product

Itinerant half-metallic ferromagnetsCo2TiZ(Z=Si, Ge, Sn):Ab initiocalculations and measurement of the electronic structure and transport properties

This work reports on ab initio calculations and experiments on the half-metallic ferromagnetic Heusler compounds ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn})$. Aim is a comprehensive study of the electronic-structure and thermoelectric properties. The impact of the variation in the main group element $Z$ on those properties is discussed. X-ray diffraction was performed on the compounds and the lattice parameters are compared to other ${\text{Co}}_{2}$-based compounds. Hard x-ray photoemission measurements were carried out and the results are compared to the calculated electronic structure. The experimentally determined electronic structure, magnetic propert…

research product

Structure-property relations in the distorted ordered double perovskite Sr2InReO6

The rock-salt ordered type double perovskite Sr${}_{2}$InReO${}_{6}$ is systematically investigated by means of powder x-ray diffraction, neutron powder diffraction, temperature-dependent electrical transport, heat capacity and magnetic susceptibility measurements, and electronic band structure calculations. The crystal structure of Sr${}_{2}$InReO${}_{6}$ is revised to be monoclinic (cryolite structure type, space group $P$2${}_{1}$/$n$) with all structural distortions according to the high-symmetry aristotype due to tilting of the InO${}_{6}$ and ReO${}_{6}$ octahedra, respectively. Sr${}_{2}$InReO${}_{6}$ is a Mott insulator with variable-range hopping. Two 5$d$ electrons are unpaired an…

research product

Charge transfer and tunable minority band gap at the Fermi energy of a quaternaryCo2(MnxTi1−x)GeHeusler alloy

We investigate the distribution of element-specific magnetic moments and changes in the spin-resolved unoccupied density of states in a series of half-metallic ${\text{Co}}_{2}({\text{Mn}}_{x}{\text{Ti}}_{1\ensuremath{-}x})\text{Ge}$ Heusler alloys using x-ray magnetic circular dichroism. The Co and Mn magnetic moments are oriented parallel while a small Ti moment shows antiparallel to the mean magnetization. The element-specific magnetic moments remain almost independent on the composition. Therefore, a replacement of Ti by Mn results in an increase in magnetization. The increase in magnetization with increasing $x$ follows the Slater-Pauling rule. The Fermi level decreases with respect to…

research product

Electronic properties of Co2MnSi thin films studied by hard x-ray photoelectron spectroscopy

This work reports on the electronic properties of thin films of the Heusler compound Co2MnSi studied by means of hard x-ray photoelectron spectroscopy (HAXPES). The results of photoelectron spectroscopy from multilayered thin films excited by photons of 2?8?keV are presented. The measurements were performed on (substrate/buffer layer/Co2MnSi(z)/capping layer) multilayers with a thickness z ranging from 0 to 50?nm. It is shown that high energy spectroscopy is a valuable tool for non-destructive depth profiling. The experimentally determined values of the inelastic electron mean free path in Co2MnSi increase from about 19.5 to 67?? on increasing the kinetic energy from about 1.9 to 6.8?keV. T…

research product

Bulk sensitive photo emission spectroscopy of compounds

This work reports about bulk-sensitive, high energy photoelectron spectroscopy from the valence band of CoTiSb excited by photons from 1.2 to 5 keV energy. The high energy photoelectron spectra were taken at the KMC-1 high energy beamline of BESSY II employing the recently developed Phoibos 225 HV analyser. The measurements show a good agreement to calculations of the electronic structure using the LDA scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra.

research product

Tailoring the electronic structure of half-metallic Heusler alloys

We investigated element-specific magnetic moments and the spin-resolved unoccupied density of states (DOS) of polycrystalline ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn},\text{ }\text{Sb})$, ${\text{Co}}_{2}{\text{Mn}}_{x}{\text{Ti}}_{1\ensuremath{-}x}\text{Si}$ and ${\text{Co}}_{2}{\text{MnGa}}_{1\ensuremath{-}x}{\text{Ge}}_{x}$ Heusler alloys using circular dichroism in x-ray absorption spectroscopy (XMCD). We find a small $(l0.03{\ensuremath{\mu}}_{B})$ Ti moment oriented antiparallel and a large $(g3{\ensuremath{\mu}}_{B})$ Mn moment oriented parallel to the Co moment of approximately $1{\ensuremath{\mu}}_{B}$ per atom in the investigated compounds. Orb…

research product

Magnetic and Structural Properties of Heusler Compounds with 27.8 Valence Electrons 

Co2-based Heusler compounds with 27.8 valence electrons exhibit an exceptional electronic structure that makes them interesting materials for the application in spintronics. Co2Cr0.6Fe0.4Al is the most prominent example of this particular family of compounds. In this article new materials of this class are tested with respect to their structural and magnetic properties. X-ray diffraction, Mossbauer spectroscopy, energy dispersive X-ray spectroscopy, and SQUID magnetometry were carried out to characterize the compounds. The use of Co2Fe0.45Ti0.55Ge as a new material in spintronic devices is suggested.

research product

Tuning the carrier concentration for thermoelectrical application in the quaternary Heusler compound Co2TiAl(1−x)Six

The family of half-metallic ferromagnets Co2TiZ exhibits exceptional transport properties. The investigated compounds Co2TiAl(1−x)Six (x = 0.25, 0.5, 0.75) show Curie temperatures (TCs) that vary between 250 and 350 K, depending on the composition. Above TC the Seebeck coefficient remains constant. This makes them promising candidates for thermoelectric devices such as thermocouples with a tunable working range. The electrical resistivity data show an anomaly at TC which is attributed to changes in the electronic structure and therefore in the carrier concentration.

research product

A spatially resolved investigation of the local, micro-magnetic domain structure of single and polycrystalline Co2FeSi

The Heusler compound Co2FeSi is a promising material for magneto-electronic devices. With a Curie temperature of 1100?K and a saturation magnetization of 6?Bohr magnetons and a high spin polarization at the Fermi edge it fulfils the essential requirements for magnetic sensors or spin valve structures. An essential feature for such devices is the micro-magnetic domain structure. X-ray magnetic circular dichroism?photo emission electron microscopy has been used for a direct observation of the domain structure of single- and polycrystalline samples. The polycrystalline material exhibits a micro-magnetic ripple structure, as it is well known for pure Co and other polycrystalline Heusler compoun…

research product

Epitaxial growth and thermoelectric properties of TiNiSn and Zr0.5Hf0.5NiSn thin films

Abstract Due to their exceptional thermoelectric properties Half-Heusler alloys like MNiSn (M = Ti,Zr,Hf) have moved into focus. The growth of single crystalline thin film TiNiSn and Zr 0.5 Hf 0.5 NiSn by dc magnetron sputtering is reported. Seebeck and resistivity measurements were performed and their dependence on epitaxial quality is shown. Seebeck coefficient, specific resistivity and power factor for Zr 0.5 Hf 0.5 NiSn at room temperature were measured to be 63 μV K − 1 , 14.1 μΩ m and 0.28 mW K − 2  m − 1 , respectively. Multilayers of TiNiSn and Zr 0.5 Hf 0.5 NiSn are promising candidates to increase the thermoelectric figure-of-merit by decreasing thermal conductivity perpendicular …

research product

Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb – A reduction in the thermal conductivity for thermoelectric applications

We investigate the phase separation of the solid solution CoTi(1−x)MnxSb into the two Heusler compounds CoTiSb and CoMnSb. Energy-dispersive X-ray spectroscopy measurements on the two-phase material reveal the presence of size- and shape-tunable CoTiSb regions in a CoMnSb matrix. We demonstrate that the formed phase and grain boundaries have a considerable influence on the phonon scattering processes, which leads to a reduction in the thermal conductivity by a factor of three compared to single-phase CoTiSb.

research product

Bulk sensitive photo emission spectroscopy of C1b compounds

This work reports about bulk-sensitive, high energy photoelectron spectroscopy from the valence band of CoTiSb excited by photons from 1.2 to 5 keV energy. The high energy photoelectron spectra were taken at the KMC-1 high energy beamline of BESSY II employing the recently developed Phoibos 225 HV analyser. The measurements show a good agreement to calculations of the electronic structure using the LDA scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra.

research product

Seebeck coefficients of half-metallic ferromagnets

In this report the Co2 based Heusler compounds are discussed as potential materials for spin voltage generation. The compounds were synthesized by arcmelting and consequent annealing. Band structure calculations were performed and revealed the compounds to be half-metallic ferromagnets. Magnetometry was performed on the samples and the Curie temperatures and the magnetic moments were determined. The Seebeck coefficients were measured from low to ambient temperatures for all compounds. For selected compounds high temperature measurements up to 900 K were performed.

research product

Investigation of the Thermoelectric Properties of the Series TiCo1-xNixSnxSb1-x

The effect of the simultaneous substitution of cobalt by nickel and antimony by tin in the solid solution TiCo1–xNixSnxSb1–x was systematically investigated. The number of valence electrons does not change by this substitution and therefore the resistivity stays semimetallic or semiconducting. The series were synthesized by arcmelting and the thermoelectric properties were determined. It was found out that the substitution of cobalt and antimony by nickel and tin reduces the thermal conductivity to 2 W·m–1·K–1 at 400 K. The reduction is caused by titanium rich prolate micro structures that were found by energy dispersive X-ray spectroscopy investigations. The Seebeck coefficient and the res…

research product

Electronic structure and transport properties of the Heusler compound Co2TiAl

The properties of the Heusler compound Co2TiAl were investigated in detail by experimental techniques and theoretical methods. X-ray diffraction measurements indicate that as-cast samples of the compound exhibit the L21 structure with a small amount of B2-type disorder. This leads to a reduced saturation magnetization per formula unit of 0.747 μB. The Curie temperature is approximately 120 K. The transport properties are influenced by the change in the electronic structure at the Curie temperature, as revealed experimentally by conductivity, thermal transport and specific heat measurements. Different theoretical models based on ab initio calculations of the electronic structure are used to …

research product

Doped semiconductors as half-metallic materials: Experiments and first-principles calculations ofCoTi1−xMxSb(M=Sc, V, Cr, Mn, Fe)

This work reports experiments and first-principles calculations on the substitutional semiconducting $C{1}_{b}$ compound $\mathrm{Co}{\mathrm{Ti}}_{1\ensuremath{-}x}{M}_{x}\mathrm{Sb}$. Diluted magnetic semiconductors have been prepared by substituting titanium in the semiconducting compound CoTiSb by other $3d$ transition elements $M$. Self-consistent calculations of the electronic structure predict some of the materials to be half-metallic ferromagnets. The structural, electronic, electric, and magnetic properties of the pure and substituted materials have been investigated. It is found from the experiments that substitution of up to 10% Ti by Fe, Mn, Cr, and V does not affect the crystal…

research product

Phase-separation-induced changes in the magnetic and transport properties of the quaternary Heusler alloyCo2Mn1−xTixSn

The quaternary Heusler compound ${\text{Co}}_{2}{\text{Mn}}_{1\ensuremath{-}x}{\text{Ti}}_{x}\text{Sn}$ with $x=0$, 0.2, 0.4, 0.5, 0.6, 0.8, and 1 shows a phase separation into the two Heusler compounds, ${\text{Co}}_{2}\text{MnSn}$ and ${\text{Co}}_{2}\text{TiSn}$. Only at the edges of the composition range a slight admixture of Mn and Ti to the respective other phase is observed. This phase separation leads to a distinct microstructure which can be altered by the composition of the material. Pronounced changes in the magnetic and electronic properties take place with varying composition. Two magnetic transitions occur which indicate different Curie temperatures for both phases. The reduct…

research product