0000000001071415

AUTHOR

R. P. De Groote

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…

research product

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

research product

Resonance ionization schemes for high resolution and high efficiency studies of exotic nuclei at the CRIS experiment

© 2019 This paper presents an overview of recent resonance ionization schemes used at the Collinear Resonance Ionization Spectroscopy (CRIS) setup located at ISOLDE, CERN. The developments needed to reach high spectral resolution and efficiency will be discussed. Besides laser ionization efficiency and high resolving power, experiments on rare isotopes also require low-background conditions. Ongoing developments that aim to deal with beam-related sources of background are presented. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:398-402 ispartof: location:SWITZERLAND, CERN, Geneva status: published

research product

Magnetic octupole moment of 173Yb using collinear laser spectroscopy

The hyperfine constants of the 4f146s6p3Po2 state in neutral Yb have been measured using three different dipole transitions. This state was recently shown to have a comparatively large hyperfine magnetic octupole splitting, and thus a puzzlingly large magnetic octupole moment. The measurement is performed using collinear laser spectroscopy on a fast atomic beam, which provides a straightforward route to probing long-lived metastable atomic states with high resolution. From the combined analysis of all three lines we find no significant evidence for a nonzero octupole moment in 173Yb. peerReviewed

research product

First demonstration of Doppler-free 2-photon in-source laser spectroscopy at the ISOLDE-RILIS

Abstract Collinear Doppler-free 2-photon resonance ionization has been applied inside a hot cavity laser ion source environment at CERN-ISOLDE. An injection-seeded Ti:sapphire ring laser was used to generate light pulses with a Fourier-limited linewidth for high-resolution spectroscopy. Using a molybdenum foil as a reflective surface positioned at the end of the target transfer line, rubidium was successfully ionized inside the hot cavity. The results are presented alongside previously obtained data from measurements performed at the RISIKO mass separator at Mainz University, where collinear and perpendicular ionization geometries were tested inside an RFQ ion guide. This work is a pre-curs…

research product

Charge Radii of ^{55,56}Ni Reveal a Surprisingly Similar Behavior at N=28 in Ca and Ni Isotopes.

Nuclear charge radii of $^{55,56}$Ni were measured by collinear laserspectroscopy. The obtained information completes the behavior of the chargeradii at the shell closure of the doubly magic nucleus $^{56}$Ni. The trend ofcharge radii across the shell closures in calcium and nickel is surprisinglysimilar despite the fact that the $^{56}$Ni core is supposed to be much softerthan the $^{48}$Ca core. The very low magnetic moment$\mu(^{55}\mathrm{Ni})=-1.108(20)\,\mu_N$ indicates the impact of M1excitations between spin-orbit partners across the $N,Z=28$ shell gaps. Ourcharge-radii results are compared to \textit{ab initio} and nuclear densityfunctional theory calculations, showing good agreeme…

research product

Laser and decay spectroscopy of the short-lived isotope Fr214 in the vicinity of the N=126 shell closure

research product

Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes

Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than …

research product

Magnetic octupole moment of Yb-173 using collinear laser spectroscopy

The hyperfine constants of the $4{f}^{14}6s6p^{3}P_{2}^{o}$ state in neutral Yb have been measured using three different dipole transitions. This state was recently shown to have a comparatively large hyperfine magnetic octupole splitting, and thus a puzzlingly large magnetic octupole moment. The measurement is performed using collinear laser spectroscopy on a fast atomic beam, which provides a straightforward route to probing long-lived metastable atomic states with high resolution. From the combined analysis of all three lines we find no significant evidence for a nonzero octupole moment in $^{173}\mathrm{Yb}$.

research product

Precision measurements of the charge radii of potassium isotopes

International audience; Precision nuclear charge radii measurements in the light-mass region are essential for understanding the evolution of nuclear structure, but their measurement represents a great challenge for experimental techniques. At the Collinear Resonance Ionization Spectroscopy (CRIS) setup at ISOLDE-CERN, a laser frequency calibration and monitoring system was installed and commissioned through the hyperfine spectra measurement of $^{38–47}$K. It allowed for the extraction of the hyperfine parameters and isotope shifts with better than 1 MHz precision. These results are in excellent agreement with available literature values and they demonstrate the suitability of the CRIS tec…

research product

Quadrupole moment of Fr 203

The spectroscopic electric quadrupole moment of the neutron-deficient francium isotope 203Fr was measured by using high-resolution collinear resonance ionization spectroscopy (CRIS) at the CERN Isotope Separation On-Line Device (ISOLDE)facility. A remeasurement of the 207Fr quadrupole momentwas also performed, resulting in a departure from the established literature value. A sudden increase in magnitude of the 203Fr quadrupole moment, with respect to the general trend in the region, points to an onset of static deformation at N =116 in the 87Fr isotopic chain. Calculation of the static and total deformation parameters show that the increase in static deformation only cannot account for the o…

research product

Upgrades to the collinear laser spectroscopy experiment at the IGISOL

Abstract We give an overview of recent changes to the collinear laser spectroscopy beamline in the IGISOL laboratory. We present a new data acquisition system, commissioning of a newly installed charge exchange cell, and cooler-voltage calibration measurements. Currently ongoing modifications to the RFQ cooler-buncher are also discussed.

research product

Study of the magnetic octupole moment of $^{173}$Yb using collinear laser spectroscopy

The hyperfine constants of the $^3$P$^{\circ}_2$ state in neutral Yb have been measured using three different dipole transitions. This state was recently shown to have a comparatively large hyperfine magnetic octupole splitting, and thus a puzzlingly large magnetic octupole moment. The measurement is performed using collinear laser spectroscopy on a fast atomic beam, which provides a straightforward route to probing long-lived metastable atomic states with high resolution. From the combined analysis of all three lines we find no significant evidence for a non-zero octupole moment in $^{173}$Yb.

research product

High-precision mass measurement of $^{168}$Yb for verification of nonlinear isotope shift

The absolute mass value of $^{168}$Yb has been directly determined with the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. A more precise value of the mass of $^{168}$Yb is needed to extract possible signatures of beyond standard model physics from high-precision isotope shift measurements of Yb atomic transition frequencies. The measured mass-excess value, ME($^{168}$Yb) = $-$61579.846(94) keV, is 12 times more precise and deviates from the Atomic Mass Evaluation 2016 value by 1.7$\sigma$. The impact on precision isotope shift studies of the stable Yb isotopes is discussed.

research product

A compact linear Paul trap cooler buncher for CRIS

A gas-filled linear Paul trap for the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at ISOLDE, CERN is currently under development. The trap is designed to accept beam from both ISOLDE target stations and the CRIS stable ion source. The motivation for the project along with the current design, simulations and future plans, will be outlined. peerReviewed

research product

CRIS: A new method in isomeric beam production

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

research product

Tin resonance-ionization schemes for atomic- And nuclear-structure studies

This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…

research product

Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\delta\langle r^{2}\rangle^{A,221}$ values for $^{218m,219}\text{Fr}$ and $^{229,231}\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\text{Fr}$ has normal staggering. This sugges…

research product

High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination

The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…

research product

Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nu- clear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1-10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spec- troscopy lineshapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitat…

research product

High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219;221Fr, and has measured isotopes as short lived as 5 ms with 214Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of singleisotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. publisher: Elsevier articletitle: High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) exp…

research product

Analytic response relativistic coupled-cluster theory: the first application to indium isotope shifts

With increasing demand for accurate calculation of isotope shifts of atomic systems for fundamental and nuclear structure research, an analytic energy derivative approach is presented in the relativistic coupled-cluster theory framework to determine the atomic field shift and mass shift factors. This approach allows the determination of expectation values of atomic operators, overcoming fundamental problems that are present in existing atomic physics methods, i.e. it satisfies the Hellmann-Feynman theorem, does not involve any non-terminating series, and is free from choice of any perturbative parameter. As a proof of concept, the developed analytic response relativistic coupled-cluster the…

research product

Dipole and quadrupole moments of Cu73–78 as a test of the robustness of the Z=28 shell closure near Ni78

Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground-states of neutron-rich $^{76-78}$Cu isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN. The nuclear moments of the less exotic $^{73,75}$Cu isotopes were re-measured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and $^{78}_{29}$Cu ($N=49$) in particular, are used to investigate excitations of the assumed doubly-magic $^{78}$Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the $Z=28$ shell gap between $N\sim45…

research product

Radium ionization scheme development: The first observed autoionizing states and optical pumping effects in the hot cavity environment

© 2018 The Authors This paper reports on resonance ionization scheme development for the production of exotic radium ion beams with the Resonance Ionization Laser Ion Source (RILIS) of the CERN-ISOLDE radioactive ion beam facility. During the study, autoionizing states of atomic radium were observed for the first time. Three ionization schemes were identified, originating from the 7s2 1S0 atomic ground state. The optimal of the identified ionization schemes involves five atomic transitions, four of which are induced by three resonantly tuned lasers. This is the first hot cavity RILIS ionization scheme to employ optical pumping effects. The details of the spectroscopic studies are described …

research product

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…

research product

Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32

Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…

research product

Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au

Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…

research product

Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A…

research product

Combined high-resolution laser spectroscopy and nuclear decay spectroscopy for the study of the low-lying states inFr206,At202, andBi198

High-resolution laser spectroscopy was performed on $^{206}\mathrm{Fr}$ with the collinear resonance ionization spectroscopy (CRIS) experiment at CERN-ISOLDE. The hyperfine structure and isotope shift of the ground, first isomeric and second isomeric states were measured. The hyperfine components were unambiguously assigned to each nuclear state by means of laser-assisted nuclear decay spectroscopy. The branching ratios in the $\ensuremath{\alpha}$ decay of $^{206}\mathrm{Fr}$ and $^{202}\mathrm{At}$ were also measured for the first time with isomerically purified beams. The extracted hindrance factors allow determination of the spin of the ground, first isomeric, and second isomeric states…

research product

High-precision measurements of the hyperfine structure of cobalt ions in the deep ultraviolet range

Scientific reports 13(1), 4783 (2023). doi:10.1038/s41598-023-31378-1

research product

Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1/2=22.0(5) ms]219Fr Qs=−1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in t…

research product

Spectroscopy of short-lived radioactive molecules: A sensitive laboratory for new physics

The study of molecular systems provides exceptional opportunities for the exploration of the fundamental laws of nature and for the search for physics beyond the Standard Model of particle physics. Measurements of molecules composed of naturally occurring nuclei have provided the most stringent upper bounds to the electron electric dipole moment to date, and offer a route to investigate the violation of fundamental symmetries with unprecedented sensitivity. Radioactive molecules - where one or more of their atoms possesses a radioactive nucleus - can contain heavy and deformed nuclei, offering superior sensitivity for EDM measurements as well as for other symmetry-violating effects. Radium …

research product

High-precision $Q$-value measurement confirms the potential of $^{135}$Cs for antineutrino-mass detection

The ground-state-to-ground-state $\beta$-decay $Q$-value of $^{135}\textrm{Cs}(7/2^+)\to\,^{135}\textrm{Ba}(3/2^+)$ was directly measured for the first time utilizing the Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique at the JYFLTRAP Penning-trap setup. It is the first direct determination of this $Q$-value and its value of 268.66(30)\,keV is a factor of three more precise than the currently adopted $Q$-value in the Atomic Mass Evaluation 2016. Moreover, the $Q$-value deduced from the $\beta$-decay endpoint energy has been found to deviate from our result by approximately 6 standard deviations. The measurement confirms that the first-forbidden unique $\beta^-$-decay transition $^{…

research product

A new off-line ion source facility at IGISOL

An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.

research product

Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…

research product

Erratum to ‘Simulation of the relative atomic populations of elements 1≤Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy of indium’ [Spectrochimica Acta Part B 153 (2019) 61–83]

research product

In-gas laser ionization and spectroscopy of actinium isotopes near the N=126 closed shell

The in-gas laser ionization and spectroscopy (IGLIS) techniquewas applied on the $^{212–215}$Ac isotopes, produced at the Leuven Isotope Separator On-Line (LISOL) facility by using the in-gas-cell and the in-gas-jet methods. The first application under on-line conditions of the in-gas-jet laser spectroscopy method showed a superior performance in terms of selectivity, spectral resolution, and efficiency in comparison with the in-gas-cell method. Following the analysis of both experiments, the magnetic-dipole moments for the $^{212–215}$Ac isotopes, electric-quadrupole moments and nuclear spins for the $^{214,215}$Ac isotopes are presented and discussed. A good agreement is obtained with lar…

research product

High-Precision Multiphoton Ionization of Accelerated Laser-Ablated Species

We demonstrate that the pulsed-time structure and high-peak ion intensity provided by the laser-ablation process can be directly combined with the high resolution, high efficiency, and low background offered by collinear resonance ionization spectroscopy. This simple, versatile, and powerful method offers new and unique opportunities for high-precision studies of atomic and molecular structures, impacting fundamental and applied physics research. We show that even for ion beams possessing a relatively large energy spread, high-resolution hyperfine-structure measurements can be achieved by correcting the observed line shapes with the time-of-flight information of the resonantly ionized ions.…

research product

Double-resonance-ionization mapping of the hyperfine structure of the stable Cu isotopes using pulsed narrowband Ti:sapphire lasers

We present two approaches to enhance the resolving power for measuring hyperfine structure constants using resonance ionization spectroscopy. The first method employs a 2D-resonance ionization spectroscopy scanning technique with pulsed, narrowband Ti:sapphire lasers (1 GHz linewidth), allowing us to resolve hyperfine components that cannot be separated using the standard 1D-scanning method across only one optical transition. In a second refinement, the resolving power is further enhanced through the use of a ring design of the laser cavity. This layout leads to a reduction of the laser linewidth from 1 GHz to below 50 MHz, resulting in experimental linewidths of about 150 MHz. Motivated by…

research product

Isotope Shifts of Radium Monofluoride Molecules

Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

research product

Optimising the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

© 2019 The CRIS experiment at CERN-ISOLDE is a dedicated laser spectroscopy setup for high-resolution hyperfine structure measurements of nuclear observables of exotic isotopes. Between 2015 and 2018 developments have been made to improve the background suppression, laser-atom overlap and automation of the beamline. Furthermore, a new ion source setup has been developed for offline studies. Here we present the latest technical developments and future perspectives for the experiment. ispartof: Nuclear Instruments & Methods In Physics Research Section B-Beam Interactions With Materials And Atoms vol:463 pages:384-389 ispartof: location:SWITZERLAND, CERN, Geneva status: published

research product

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

research product

First trap-assisted decay spectroscopy of the $$^{81}$$Ge ground state

AbstractThe $$\beta $$ β -delayed $$\gamma $$ γ spectroscopy of $$^{81}$$ 81 As has been performed using a purified beam of $$^{81}$$ 81 Ge $$(9/2^+)$$ ( 9 / 2 + ) ground state at the Ion Guide Isotope Separator On-Line facility (IGISOL). The $$^{81}$$ 81 Ge$$^+$$ + ions were produced using proton-induced fission of $$^{232}$$ 232 Th and selected with the double Penning trap JYFLTRAP for the post-trap decay spectroscopy measurements. The low-spin $$(1/2^+)$$ ( 1 / 2 + ) isomeric-state ions $$^{81m}\hbox {Ge}^+$$ 81 m Ge + were not observed in the fission products. The intrinsic half-life of the $$^{81}$$ 81 Ge ground state has been determined as $$T_{1/2}=6.4(2)~\hbox {s}$$ T 1 / 2 = 6.4 ( …

research product

The MORA project

The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.

research product

On the performance of wavelength meters : Part 1 : consequences for medium-to-high-resolution laser spectroscopy

Present-day laser-spectroscopy experiments increasingly rely on modern commercial devices to monitor, stabilize, and scan the wavelength of their probe laser. Recently, new techniques are capable of achieving unprecedented levels of precision on atomic and nuclear observables, pushing these devices to their performance limits. Considering the fact that these observables themselves are deduced from the frequency difference between specific atomic resonances, in the order of MHz–GHz, the uncertainty on the output of the device measuring the wavelength is often directly related to the final systematic uncertainty on the experimental results. Owing to its importance, the performance of several …

research product

Efficient, high-resolution resonance laser ionization spectroscopy using weak transitions to long-lived excited states

Laser spectroscopic studies on minute samples of exotic radioactive nuclei require very efficient experimental techniques. In addition, high resolving powers are required to allow extraction of nuclear structure information. Here we demonstrate that by using weak atomic transitions, resonance laser ionization spectroscopy is achieved with the required high efficiency (1%–10%) and precision (linewidths of tens of MHz). We illustrate experimentally and through the use of simulations how the narrow experimental linewidths are achieved and how distorted resonance ionization spectroscopy line shapes can be avoided. The role of the delay of the ionization laser pulse with respect to the excitatio…

research product

Simulation of the relative atomic populations of elements 1 ≤ Z ≤89 following charge exchange tested with collinear resonance ionization spectroscopy of indium

© 2019 The Authors Calculations of the neutralisation cross-section and relative population of atomic states were performed for ions beams (1 ≤ Z ≤ 89) at 5 and 40 keV incident on free sodium and potassium atoms. To test the validity of the calculations, the population distribution of indium ions incident on a vapour of sodium was measured at an intermediate energy of 20 keV. The relative populations of the 5s 2 5p 2 P 1/2 and 5s 2 5p 2 P 3/2 states in indium were measured using collinear resonance ionization spectroscopy and found to be consistent with the calculations. Charge exchange contributions to high-resolution lineshapes were also investigated and found to be reproduced by the calc…

research product

Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass

We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensurem…

research product

Nuclear moments of indium isotopes reveal abrupt change at magic number 82

In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3-5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements perf…

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F20

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product