0000000001100311

AUTHOR

Gerhard Wegener

Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle

Glycolytic flux in white muscle can be increased several-hundredfold by exercise. Phosphofructokinase (PFK; EC 2.7.1.11) is a key, regulatory enzyme of glycolysis, but how its activity in muscle is controlled is not fully, understood. In order not to neglect integrative aspects of metabolic regulation, we have studied in frogs (Rana temporaria) a physiological form of muscle work (swimming) that can be triggered like a reflex. We analysed swimming to fatigue in well rested frogs, recovery from exercise, and repeated exercise after 2 h of recovery. At various times, gastrocnemius muscles were tested for glycolytic intermediates and effectors of PFK. All metabolites responded similarly to the…

research product

Regulatory properties of 6-phosphofructokinase and control of glycolysis in boar spermatozoa.

Glycolysis is crucial for sperm functions (motility and fertilization), but how this pathway is regulated in spermatozoa is not clear. This prompted to study the location and the regulatory properties of 6-phosphofructokinase (PFK, EC 2.7.1.11), the most important element for control of glycolytic flux. Unlike some other glycolytic enzymes, PFK showed no tight binding to sperm structures. It could readily be extracted from ejaculated boar spermatozoa by sonication and was then chromatographically purified. At physiological pH, the enzyme was allosterically inhibited by near-physiological concentrations of its co-substrate ATP, which induced co-operativity, i.e. reduced the affinity for the …

research product

A novel pyruvate kinase (PK-S) from boar spermatozoa is localized at the fibrous sheath and the acrosome

Boar spermatozoa contain a novel pyruvate kinase (PK-S) that is tightly bound at the acrosome of the sperm head and at the fibrous sheath in the principal piece of the flagellum, while the midpiece contains a soluble pyruvate kinase (PK). PK-S could not be solubilized by detergents, but by trypsin with no loss of activity. Purified PK-S as well as PK-S still bound to cell structures and soluble sperm PK have all kinetics similar to those of rabbit muscle PK-M1. The PK-S subunit had a relative molecular mass of 64 ± 1 × 103(n= 3), i.e. slightly higher than that of PK-M1, and carried an N-terminal extension (NH2-TSEAM-COOH) that is lacking in native PK-M1. Evidence is provided that PK-S is en…

research product

Locust flight metabolism studied in vivo by 31P NMR spectroscopy

Flight metabolism of locusts has been extensively studied, but biochemical and physiological methods have led to conflicting results. For this reason the non-invasive and non-destructive method of 31P NMR spectroscopy was used to study migratory locusts, Locusta migratoria, at rest and during flight. 1. In the flight muscle of resting locusts the ratio of phosphoarginine to ATP was the same whether determined by NMR (1.76) or biochemically, but the NMR-visible content of inorganic phosphate (Pi) was only 40% of ATP, i.e., much lower than total Pi as determined biochemically. This suggests that most of the Pi in flight muscle is not free, and hence not available as substrate or effector for …

research product

The regulation of glycolysis in flying locusts (Locusta migratoria)

research product

Fate and effects of the trehalase inhibitor trehazolin in the migratory locust (Locusta migratoria).

Abstract Trehalose is the main haemolymph sugar in many insect species. To be utilized trehalose must be hydrolysed into its glucose units by trehalase (EC 3.2.1.28). Inhibitors of trehalase have attracted interest as possible pesticides and tools for studying the regulation of trehalose metabolism in insects. To make full use of these inhibitors requires knowledge of their fate and effects in vivo. To this end we have measured trehazolin in locusts using a method based on the specific inhibition of a trehalase preparation. After injection of 20 μg, trehazolin decreased in haemolymph with a half-life of 2.6 days and after 10 days almost 95% had disappeared. Trehazolin did not reach the intr…

research product

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from frog skeletal muscle: purification, kinetics and immunological properties.

Fructose 2,6-bisphosphate is the most potent activator of 6-phosphofructo-1-kinase, a key regulatory enzyme of glycolysis in animal tissues. This study was prompted by the finding that the content of fructose 2,6-bisphosphate in frog skeletal muscle was dramatically increased at the initiation of exercise and was closely correlated with the glycolytic flux during exercise. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, the enzyme system catalyzing the synthesis and degradation of fructose 2,6-bisphosphate, was purified from frog (Rana esculenta) skeletal muscle and its properties were compared with those of the rat muscle type enzyme expressed in Escherichia coli using recombinant DN…

research product

Responses and adaptations of collembolan communities (Hexapoda: Collembola) to flooding and hypoxic conditions

Standard ecological methods (pitfall traps, trunk eclectors and soil cores) were used to evaluate collembolan community responses to different flooding intensities. Three sites of a floodplain habitat near Mainz, Germany, with different flooding regimes were investigated. The structures of collembolan communities are markedly different depending on flooding intensity. Sites more affected by flooding are dominated by hygrophilic and hygrotolerant species, whereas the hardwood floodplain is dominated by mesophilic species. The survival strategies of the hygrophilic and hygrotolerant species include egg diapause and passive drifting. The physiological adaptations to hypoxic conditions of sever…

research product

Glycogen phosphorylase from flight muscle of the hawk moth, Manduca sexta: purification and properties of three interconvertible forms and the effect of flight on their interconversion

Glycogen phosphorylase (EC 2.4.1.1) of Manduca sexta flight muscle was separated into three distinct peaks of activity on diethylaminoethyl-Sephacel. The three fractions of phosphorylase activity were further purified by affinity chromatography on AMP-Sepharose and shown to have the same relative molecular mass (=178000) on polyacrylamide gradient gel electrophoresis under non-denaturating conditions and to produce subunits of molecular mass =92000 on SDS gelelectrophoresis. On the basis of their kinetic properties with respect to the activator AMP and the inhibitor caffeine, the three fractions of phosphorylase activity were assigned as follows: peak 1=phosphorylase b (unphosphorylated for…

research product

Hypoxia and anoxia in insects: microcalorimetric studies on two species (Locusta migratoria and Manduca sexta) showing different degrees of anoxia tolerance

Abstract Microcalorimetry was used to study the effects of graded hypoxia and anoxia on two species of insects that differ in their tolerance of anoxia. Locusts (Locusta migratoria) can survive an atmosphere of pure nitrogen for not more than 4 h (at room temperature), whereas hawk moths (Manduca sexta) can recover from more than 24 h of anoxia. To produce graded hypoxia, air and pure nitrogen were mixed and this mixture was passed through the cells of a twin calorimeter equipped with circulation cells. A gas flow containing 2% or more of oxygen had no significant effect on behaviour (as observed in parallel experiments using transparent cells) or heat flow rate. If oxygen content was reduc…

research product

The effects of insulin on transport and metabolism of glucose in skeletal muscle from hyperthyroid and hypothyroid rats.

The effects of insulin on the rates of glucose disposal were studied in soleus muscles isolated from hyper- or hypothyroid rats. Treatment with triiodothyronine for 5 or 10 days decreased the sensitivity of glycogen synthesis but increased the sensitivity of lactate formation to insulin. The sensitivity of 3-O methylglucose to insulin was increased only after 10 days of treatment and was accompanied by an increase in the sensitivity of 2-deoxyglucose phosphorylation; however, 2-deoxyglucose and glucose 6-phosphate in response to insulin remained unaltered. In hypothyroidism, insulin-stimulated rates of 3-O-methylglucose transport and 2-deoxyglucose phosphorylation were decreased; however, a…

research product

Age affects the metabolic rate of insect brain.

Abstract Brains of adult insects can be isolated and studied vitro. In female blowflies the oxygen uptake of the brain is age dependent. A steady increase is followed by a precipitous decrease around the middle of the life span. These changes are accompanied by alterations of mitochondrial structure and deposits of lipofuscin-like material.

research product

Regulatory features of glycogen phosphorylase from frog brain (Rana temporaria)

1. Glycogen content and the activity of glycogen phosphorylase (GPase) are much higher in brain tissue of the Common frog (Rana temporaria) than in brain tissue of mammals and birds (Table 1). 2. In phosphate buffer GPase is extracted from frog orain in a form completely active without addition of AMP and has therefore to be regarded as phosphorylase a. Several procedures to extract the b-form of the enzyme from the tissue have been unsuccessful. In resting skeletal muscle predominantly the AMP dependent b-form is present (Table 1). 3. In vitro, however, the existence of the complete interconverting system can be demonstrated. If NaF (a phosphatase inhibitor) was omitted from the homogeniza…

research product

Metabolic changes in skeletal muscle of frog during exercise and recovery.

research product

Signal transduction in isolated fat body from the cockroach Blaptica dubia exposed to hypertrehalosaemic neuropeptide

Hypertrehalosaemic hormones stimulate trehalogenesis while inhibiting glycolysis in cockroach fat body. Signal transduction of the hypertrehalosaemic peptide Bld HrTH was examined in isolated fat body of the Argentine cockroach Blaptica dubia with respect to its effects on the increase in trehalose production and decrease in the content of the glycolytic activator fructose 2,6-bisphosphate in the tissue. Cyclic AMP does not seem to be involved in these processes as the cAMP analogue cpt-cAMP and the phosphodiesterase inhibitor IBMX, which both permeate cell membranes, had no effect on either parameter. Octopamine at physiological concentrations (10−7 mol · l−1) was also ineffective, but at …

research product

Metabolic integration in locust flight: the effect of octopamine on fructose 2,6-bisphosphate content of flight muscle in vivo

The biogenic amine octopamine was injected into the haemolymph of 20-days old male locusts,Locusta migratoria, and the content of fructose 2,6-bisphosphate, a potent activator of glycolysis, was measured in the flight muscle after various time. Octopamine brought about a transient increase in fructose 2,6-bisphosphate. After the injection of 10 μl of 10 mmol·l-1 d, l-octopamine fructose 2,6-bisphosphate was increased by 61% within 2 min. Ten minutes after the injection fructose 2,6-bisphosphate was increased to 6.71±0.89 nmol·g-1 flight muscle, almost 300% over the control value. Flight caused fructose 2,6-bisphosphate in flight muscle to decrease, but this decrease was counteracted by octo…

research product

Antagonistic effects of hypertrehalosemic neuropeptide on the activities of 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase in cockroach fat body

Hypertrehalosemic neuropeptides from the corpora cardiaca such as the decapeptide Bld HrTH bring about a profound switch in the metabolic activity of cockroach fat body during which production of the blood sugar trehalose is stimulated while the catabolism of carbohydrate (glycolysis) is inhibited. The mechanisms of the metabolic switch are not fully understood. Incubation of isolated fat body from the cockroach Blaptica dubia with 10(-8) M Bld HrTH, for 10-60 min, stimulated glycogen breakdown and increased the content of the substrates of both the glycolytic enzyme 6-phosphofructo-1-kinase (PFK, EC 2.7.1.11) and the gluconeogenic enzyme fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) in…

research product

Central Modulatory Neurons Control Fuel Selection in Flight Muscle of Migratory Locust

Insect flight is one of the most intense and energy-demanding physiological activities. High carbohydrate oxidation rates are necessary for take-off, but, to spare the limited carbohydrate reserves, long-distance flyers, such as locusts, soon switch to lipid as the main fuel. We demonstrate that before a flight, locust muscles are metabolically poised for take-off by the release of octopamine from central modulatory dorsal unpaired median (DUM) neurons, which increases the levels of the potent glycolytic activator fructose 2,6-bisphosphate in flight muscle. Because DUM neurons innervating the flight muscles are active during rest but selectively inhibited during flight, they stimulate carbo…

research product

Heat production of frogs under normoxic and hypoxic conditions: A microcalorimetric study using a gas flow system

Abstract Heat production of male frogs, Rana temporaria , was measured in a microcalorimeter through which a continuous flow of gas was passed in order to generate constant normoxic, hypoxic or anoxic conditions. The normoxic heat flow was 163 ± 37 μ W g body weight in frogs that had not been treated with curare and 149 ± 69 μ W g in animals immobilized with curare. During anoxia, frogs, whether curarized or not, decreased their heat production to about 25% of the respective normoxic control. In graded hypoxia (10% to 3% O 2 ), curarized frogs decreased their heat rate according to the grade of hypoxia they were subjected to.

research product

Effects of glucocorticoid excess on the sensitivity of glucose transport and metabolism to insulin in rat skeletal muscle.

This study examines the mechanisms of glucocorticoid-induced insulin resistance in rat soleus muscle. Glucocorticoid excess was induced by administration of dexamethasone to rats for 5 days. Dexamethasone decreased the sensitivity of 3-O-methylglucose transport, 2-deoxyglucose phosphorylation, glycogen synthesis and glucose oxidation to insulin. The total content of GLUT4 glucose transporters was not decreased by dexamethasone; however, the increase in these transporters in the plasma membrane in response to insulin (100 m-units/litre) was lessened. In contrast, the sensitivity of lactate formation to insulin was normal. The content of 2-deoxyglucose in the dexamethasone-treated muscle was …

research product

Fructose 2,6-bisphosphate and glycolytic flux in skeletal muscle of swimming frog

AbstractGlycolytic flux in skeletal muscle is controlled by 6-phosphofructokinase but how this is achieved is controversial. Brief exercise (swimming) in frogs caused a dramatic increase in the phosphofructokinase activator, fructose 2,6-bisphosphate, in working muscle. The kinetics of phosphofructokinase suggest that in resting muscle, the enzyme is inhibited by ATP plus citrate and that the increase in fructose 2,6-bisphosphate is part of the mechanism to activate phosphofructokinase when exercise begins. When exercise was sustained, fructose 2,6-bisphosphate in muscle was decreased as was the rate of lactate accumulation. Glycolytic flux and the content of fructose 2,6-bisphosphate appea…

research product

Fructose 2,6-bisphosphate as a signal for changing from sugar to lipid oxidation during flight in locusts

AbstractFlight in locusts is initially powered mainly by carbohydrate but if flight is to be sustained, as in migration, the animals have to utilize fat as the predominant fuel. The molecular basis of this metabolic switch has not been identified. Fructose 2,6-bisphosphate is a potent activator of 6-phosphofructokinase (EC 2.7.1.11) purified from locust flight muscle. After the first few minutes of flight in the locust the concentration of fructose 2,6-bisphosphate in the flight muscle falls dramatically, which should lead to a decrease in the activity of 6-phosphofructokinase as part of the mechanism to conserve carbohydrate during prolonged flight.

research product

Effects of insulin-like growth factor I on the rates of glucose transport and utilization in rat skeletal muscle in vitro.

1. The effects of insulin-like growth factor I (IGF-I) on the rates of glucose transport and utilization and its interaction with insulin were investigated in rat soleus muscle in vitro. IGF-I increased the rates of glucose transport, lactate formation, glycogen synthesis and the flux of glucose to hexose monophosphate, but it had no effect on the rate of glucose oxidation or glycogenolysis. 2. In the absence of insulin, low levels of IGF-I (0-30 ng/ml) increased the rate of glycolysis and the content of fructose 2,6-bisphosphate, but the content of glucose 6-phosphate remained unaltered; at higher levels of IGF-I (300-3000 ng/ml) the rate of glycolysis and the content of fructose 2,6-bisph…

research product

Expression and compartmentalisation of the glycolytic enzymes GAPDH and pyruvate kinase in boar spermatogenesis

Boar spermatozoa contain isoforms of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) and pyruvate kinase (PK, EC 2.7.1.40). The sperm-specific forms, GAPDH-S and PK-S, are tightly bound to cell structures. By immunofluorescence microscopy GAPDH-S and PK-S were localised in the principal piece of the boar sperm flagellum as well as in the acrosomal region of the sperm head and at the head–midpiece junction. The midpiece of the flagellum, however, contains isoforms of GAPDH and PK that were only recognised by antibodies against somatic GAPDH and PK, respectively, but not by the antibodies against GAPDH-S and PK-S. In sections of boar testis, GAPDH-S and PK-S were first dete…

research product

Control of adenine nucleotide metabolism and glycolysis in vertebrate skeletal muscle during exercise.

The turnover of adenosine triphosphate (ATP) in vertebrate skeletal muscle can increase more than a hundredfold during high-intensity exercise, while the content of ATP in muscle may remain virtually unchanged. This requires that the rates of ATP hydrolysis and ATP synthesis are exactly balanced despite large fluctuations in reaction rates. ATP is regenerated initially at the expense of phosphocreatine (PCr) and then mainly through glycolysis from muscle glycogen. The increased ATP turnover in contracting muscle will cause an increase in the contents of adenosine diphosphate (ADP), adenosine monophosphate (AMP) and inorganic phosphate (P(i)), metabolites that are substrates and activators o…

research product

Properties of 6-phosphofructokinase from insect flight muscle

research product

6-Phosphofructokinase from frog skeletal muscle: purification and properties

research product

2-AMINOETHYLPHOSPHONIC ACID IS THE MAIN PHOSPHORUS COMPOUND IN LOCUST HAEMOLYMPH

research product

Respostas e adaptações de comunidades de colêmbolos (Hexapoda: Collembola) a condições de inundação e hipoxia

Standard ecological methods (pitfall traps, trunk eclectors and soil cores) were used to evaluate collembolan community responses to different flooding intensities. Three sites of a floodplain habitat near Mainz, Germany, with different flooding regimes were investigated. The structures of collembolan communities are markedly different depending on flooding intensity. Sites more affected by flooding are dominated by hygrophilic and hygrotolerant species, whereas the hardwood floodplain is dominated by mesophilic species. The survival strategies of the hygrophilic and hygrotolerant species include egg diapause and passive drifting. The physiological adaptations to hypoxic conditions of sever…

research product

Coordination and Integration of Metabolism in Insect Flight*

Abstract Insect flight is the most energy-demanding activity of animals. It requires the coordination and cooperation of many tissues, with the nervous system and neurohormones controlling the performance and energy metabolism of muscles, and of the fat body, ensuring that the muscles and nerves are supplied with essential fuels throughout flight. Muscle metabolism can be based on several different fuels, the proportions of which vary according to the insect species and the stage in flight activity. Octopamine, which acts as neurotransmitter, neuromodulator or neurohormone in insects, has a central role in flight. It is present in brain, ventral ganglia and nerves, supplying peripheral tiss…

research product

Strombine dehydrogenase in the demosponge Suberites domuncula: Characterization and kinetic properties of the enzyme crucial for anaerobic metabolism

Previously, the cDNA and the respective gene for a presumed tauropine dehydrogenase (TaDH) from Suberites domuncula (GenBank accession nos. AM712888, AM712889) had been annotated. The conclusion that the sequences encode a TaDH had been inferred from the 68% identity with the TaDH protein from the marine demosponge Halichondria japonica. However, subsequent enzymatic assays shown here indicate that the presumed S. domuncula opine dehydrogenase is in fact a strombine dehydrogenase (StDH). The enzyme StDH is highly specific for glycine and is inhibited by an excess of the substrate pyruvate. Besides kinetic data, we report in this study also on the predicted tertiary and quaternary structure …

research product

Glycogen phosphorylase in fish brain (Carassius carassius) during hypoxia

research product

Flying insects: model systems in exercise physiology

Insect flight is the most energy-demanding exercise known. It requires very effective coupling of adenosine triphosphate (ATP) hydrolysis and regeneration in the working flight muscles.31P nuclear magnetic resonance (NMR) spectroscopy of locust flight muscle in vivo has shown that flight causes only a small decrease in the content of ATP, whereas the free concentrations of inorganic phosphate (P i ), adenosine diphosphate (ADP) and adenosine monophosphate (AMP) were estimated to increase by about 3-, 5- and 27-fold, respectively. These metabolites are potent activators of glycogen phosphorylase and phosphofructokinase (PFK). Activation of glycolysis by AMP and P i is reinforced synergistica…

research product

Long-term effects of the trehalase inhibitor trehazolin on trehalase activity in locust flight muscle.

SUMMARY Trehalase (EC 3.2.1.28) hydrolyzes the main haemolymph sugar of insects, trehalose, into the essential cellular substrate glucose. Trehalase in locust flight muscle is bound to membranes that appear in the microsomal fraction upon tissue fractionation, but the exact location in vivo has remained elusive. Trehalase has been proposed to be regulated by a novel type of activity control that is based on the reversible transformation of a latent (inactive) form into an overt (active) form. Most trehalase activity from saline-injected controls was membrane-bound (95%) and comprised an overt form (∼25%) and a latent form (75%). Latent trehalase could be assayed only after the integrity of …

research product

Regulation of fructose 2,6-bisphosphate in perfused flight muscle of the locust, Locusta migratoria: The effect of octopamine

research product

Properties of locust muscle 6-phosphofructokinase and their importance in the regulation of glycolytic flux during prolonged flight

6-Phosphofructokinase (PFK, EC 2.7.1.11) from the flight muscle of the locust (Locusta migratoria) was purified to a specific activity of 80 μmol min−1 (mg protein)−1 (at 25°C). 1. The enzyme is made up from subunits ofMr-81600, and the smallest catalytically active form is likely to be a tetramer. 2. PFK activity is markedly affected by the pH of the assay; the optimum pH was at about 8. 3. Physiological concentrations of ATP strongly inhibit locust PFK by shifting the S0.5 for fructose 6-phosphate (concentration required for 50% of maximum activity) out of the physiological concentration range. At pH 7.4 and about physiological concentrations of ATP, the curve of PFK activity against the …

research product

The regulation of trehalose metabolism in insects.

Trehalose is a non-reducing disaccharide comprising two glucose molecules. It is present in high concentration as the main haemolymph (blood) sugar in insects. The synthesis of trehalose in the fat body (an organ analogous in function to a combination of liver and adipose tissue in vertebrates) is stimulated by neuropeptides (hypertrehalosaemic hormones), released from the corpora cardiaca, a neurohaemal organ associated with the brain. The peptides cause a decrease in the content of fructose 2,6-bisphosphate in fat body cells. Fructose 2,6-bisphosphate, acting synergistically with AMP, is a potent activator of the glycolytic enzyme 6-phosphofructokinase-1 and a strong inhibitor of the gluc…

research product

Energy metabolism and metabolic rate of the alder leaf beetle Agelastica alni (L.) (Coleoptera, Chrysomelidae) under aerobic and anaerobic conditions: a microcalorimetric study

In early fall, adult alder leaf beetles (Agelastica alni L.) retreat, for overwintering, to the top layer of the soil near their forage trees where the ground gets easily waterlogged so that the beetles will be submerged and cut off from atmospheric oxygen. Hence, unlike most other adult insects, alder leaf beetles encounter hypoxia/anoxia in their natural habitat and this may occur at moderate temperature. Exposing beetles to pure nitrogen gas at 20 degrees C had similar behavioral and metabolic effects as submerging them in water, causing rapid immobility and increasing the content of lactate about sevenfold to some 5mgr;molg(-1) body weight during 10h anoxia. Recovery from 10 h hypoxia/a…

research product

Wasp venom injected into the prey's brain modulates thoracic identified monoaminergic neurons.

The wasp Ampulex compressa injects a cocktail of neurotoxins into the brain of its cockroach prey to induce an enduring change in the execution of locomotory behaviors. Our hypothesis is that the venom injected into the brain indirectly alters the activity of monoaminergic neurons, thus changing the levels of monoamines that tune the central synapses of locomotory circuits. The purpose of the present investigation was to establish whether the venom alters the descending control, from the brain, of octopaminergic neurons in the thorax. This question was approached by recording the activity of specific identified octopaminergic neurons after removing the input from the brain or after a wasp s…

research product

2-Aminoethylphosphonic acid is the main phosphorus compound in locust hemolymph

research product

The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia

SUMMARY The main blood sugar of locusts is trehalose, which is hydrolysed to two glucose units by trehalase. Homogenates of locust flight muscles are rich in trehalase activity, which is bound to membranes. A minor fraction of trehalase is in an overt form while the remainder is latent, i.e. active only after impairing membrane integrity. Trehazolin, an antibiotic pseudosaccharide,inhibits locust flight muscle trehalase with apparent Ki-and EC50 values of 10–8 mol l–1and 10–7 mol l–1, respectively. Trehazolin is insecticidal: 50 μg injected into locusts completely and selectively blocked the overt form of muscle trehalase (with little effect on latent activity) and killed 50% of the insects…

research product