0000000001144462

AUTHOR

Ilenia Vitrano

A 3D‑scaffold of PLLA induces the morphological differentiation and migration of primary astrocytes and promotes the production of extracellular vesicles

The present study analyzed the ability of primary rat astrocytes to colonize a porous scaffold, mimicking the reticular structure of the brain parenchyma extracellular matrix, as well as their ability to grow, survive and differentiate on the scaffold. Scaffolds were prepared using poly-L-lactic acid (PLLA) via thermally-induced phase separation. Firstly, the present study studied the effects of scaffold morphology on the growth of astrocytes, evaluating their capability to colonize. Specifically, two different morphologies were tested, which were obtained by changing the polymer concentration in the starting solution. The structures were characterized by scanning electron microscopy, and a…

research product

PLLA scaffolds with controlled architecture as potential microenvironment for in vitro tumor model

Abstract The "microenvironment" where a tumor develops plays a fundamental role in determining its progression, the onset of metastasis and, eventually, its resistance to therapies. Tumor cells can be considered more or less invasive depending both on the nature of the cells and on the site where they are located. Commonly adopted laboratory culture protocols for the investigation of tumor cells take usually place on standard two-dimensional supports. However, such cultures do not allow for reproduction of the biophysical properties of the tumor’s microenvironment, thus causing the cells to lose most of their relevant characteristics. In this work MDA-MB 231 breast cancer cells were cultiva…

research product

Blend scaffolds with polyaspartamide/polyester structure fabricated via TIPS and their RGDC functionalization to promote osteoblast adhesion and proliferation

Target of this work was to prepare a RGDC functionalized hybrid biomaterial via TIPS technique to achieve a more efficient control of osteoblast adhesion and diffusion on the three-dimensional (3D) scaffolds. Starting from a crystalline poly(l-lactic acid) (PLLA) and an amorphous alpha,beta-poly(N-2-hydroxyethyl) (2-aminoethylcarbamate)-d,l-aspartamide-graft-polylactic acid (PHEA-EDA-g-PLA) copolymer, blend scaffolds were characterized by an appropriate porosity and pore interconnection. The PHEA-EDA-PLA interpenetration with PLLA improved hydrolytic susceptibility of hybrid scaffolds. The presence of free amino groups on scaffolds allowed to tether the cyclic RGD peptide (RGDC) via Michael…

research product

USO DI TECNICHE AVANZATE PER LA OTTIMIZZAZIONE STRUTTURALE E FUNZIONALE DI SCAFFOLD COMPOSITI POLIMERO-CARICA INORGANICA PER LA RIGENERAZIONE OSSEA.

research product

Biological characterization of Poly-L-lactic acid (PLLA)/Hydroxyapatite (HA)/Bioglass (BG) composite scaffolds made by Thermally Induced Phase Separation (TIPS) hosting human Mesenchymal Stem Cells

In the last few years, Tissue Engineering has focused on the favourable effects that composite scaffolds have on cell adhesion, growth and differentiation. In fact, composite scaffolds, usually composed of a synthetic polymer supplemented with naturally occurring components, display superior mechanical properties and bioconductivity than scaffolds consisting of a single component. Hydroxyapatite (HA) is the major inorganic component of bones. Bioglass (BG) is known to exert stimulatory effects on cells by ion release and hence, could be also advantageous for Bone Tissue Engineering. Poly-L-lactic acid (PLLA) is a versatile synthetic polymer combinable with HA and BG. The aim of this work wa…

research product

Microscopic evidence of the primary astrocytes' morphological differentiation and migration inside porous Poly-L-lactic acid 3D‑scaffolds

Tissue engineering is an emerging multidisciplinary field that aims at reproducing in vitro and/or in vivo tissues with morphological and functional features similar to the biological tissue of the human body [1]. In the attempt to construct suitable tissue models, a critical step is the setting of 3D scaffolds that mimic the supportive structures of a natural extracellular matrix microenvironment into which cells are normally embedded. In this context, the generation of 3D cultures of brain cells is of particular interest. For instance, the poly L‐lactic acid (PLLA) polymer is wildly used because of its biocompatible and biodegradable potential; the PLLA scaffold topography simulates the n…

research product

Improvement of osteogenic differentiation of human mesenchymal stem cells on composite poly l-lactic acid/nano-hydroxyapatite scaffolds for bone defect repair.

Tissue engineering offers new approaches to repair bone defects, which cannot be repaired physiologically, developing scaffolds that mimic bone tissue architecture. Furthermore, biomechanical stimulation induced by bioreactor, provides biomechanical cues that regulate a wide range of cellular events especially required for cellular differentiation and function. The improvement of human mesenchymal stem cells (hMSCs) colonization in poly-L-lactic-acid (PLLA)/nano- hydroxyapatite (nHA) composite scaffold was evaluated in terms of cell proliferation (dsDNA content), bone differen- tiation (gene expression and protein synthesis) and ultrastructural analysis by comparing static (s3D) and dynamic…

research product

Effect of hydroxyapatite concentration and size on morpho-mechanical properties of PLA-based randomly oriented and aligned electrospun nanofibrous mats

The growing demand for nanofibrous biocomposites able to provide peculiar properties requires systematic investigations of processing-structure-property relationships. Understanding the morpho-mechanical properties of an electrospun scaffold as a function of the filler features and mat microstructure can aid in designing these systems. In this work, the reinforcing effect of micrometric and nanometric hydroxyapatite particles in polylactic acid-based electrospun scaffold presenting random and aligned fibers orientation, was evaluated. The particles incorporation was investigated trough Fourier transform infrared spectroscopy in attenuated total reflectance. The morphology of the nanofibers …

research product