0000000001162704

AUTHOR

Alessandro Melchiorri

showing 30 related works from this author

Dark Radiation candidates after Planck

2013

Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom of Neff=3.62^{+0.50}_{-0.48} at 95% CL. These new measurements provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. Here we review the bounds or the allowed parameter regions in sterile neutrino models, hadronic axion models as well as on extended dark sectors with additional light species based on the latest Planck CMB observations.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Neutrino and dark radiation properties in light of recent CMB observations

2013

Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions for the neutrino and dark radiation properties. In this paper we set new bounds on the dark radiation and neutrino properties in different cosmological scenarios combining the ACT and SPT data with the nine-year data release of the Wilkinson Microwave Anisotropy Probe (WMAP-9), baryon acoustic oscillation data, Hubble Telescope measurements of the Hubble constant, and supernovae Ia luminosity distance data. In the standard three massive neutrino case, the two high multipole probes give similar results if baryon acoust…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Astrophysics::High Energy Astrophysical PhenomenaDark matterCosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesRadiacióHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsCosmologia010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsHubble ConstantCosmological modelCMB cold spotHigh Energy Physics - Phenomenology13. Climate actionDark radiationChristian ministryNeutrinoBaryuon Acosutic-OscillationsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Nonminimal dark sector physics and cosmological tensions

2019

We explore whether non-standard dark sector physics might be required to solve the existing cosmological tensions. The properties we consider in combination are an interaction between the dark matter and dark energy components, and a dark energy equation of state $w$ different from that of the canonical cosmological constant $w=-1$. In principle, these two parameters are independent. In practice, to avoid early-time, superhorizon instabilities, their allowed parameter spaces are correlated. We analyze three classes of extended interacting dark energy models in light of the 2019 Planck CMB results and Cepheid-calibrated local distance ladder $H_0$ measurements of Riess et al. (R19), as well …

PhysicsParticle physicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)FOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsType (model theory)Coupling (probability)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)13. Climate action0103 physical sciencesDark energysymbolsPlanck010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsQuintessence
researchProduct

Observables sensitive to absolute neutrino masses. II

2008

In this followup to Phys. Rev. D 75, 053001 (2007) [arXiv:hep-ph/0608060] we report updated constraints on neutrino mass-mixing parameters, in light of recent neutrino oscillation data (KamLAND, SNO, and MINOS) and cosmological observations (WMAP 5-year and other data). We discuss their interplay with the final 0nu2beta decay results in 76-Ge claimed by part of the Heidelberg-Moscow Collaboration, using recent evaluations of the corresponding nuclear matrix elements, and their uncertainties. We also comment on the 0nu2beta limits in 130-Te recently set by Cuoricino, and on prospective limits or signals from the KATRIN experiment.

PhysicsMass numberNuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics (astro-ph)Cosmic background radiationFOS: Physical sciencesAstrophysicsCMB cold spotHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)MINOSDouble beta decayHigh Energy Physics::ExperimentSensitivity (control systems)Nuclear Experiment (nucl-ex)NeutrinoNeutrino oscillationNuclear ExperimentPhysical Review D
researchProduct

Dark radiation and interacting scenarios

2013

An extra dark radiation component can be present in the universe in the form of sterile neutrinos, axions or other very light degrees of freedom which may interact with the dark matter sector. We derive here the cosmological constraints on the dark radiation abundance, on its effective velocity and on its viscosity parameter from current data in dark radiation-dark matter coupled models. The cosmological bounds on the number of extra dark radiation species do not change significantly when considering interacting schemes. We also find that the constraints on the dark radiation effective velocity are degraded by an order of magnitude while the errors on the viscosity parameter are a factor of…

Nuclear and High Energy PhysicsSterile neutrinoCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterCosmological parametersCosmic background radiationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesCosmologyRadiacióPower spectrumsymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsAxionTelescopeDigital sky surveyPhysicsCosmologiaHubble constant010308 nuclear & particles physicsSpectral densityMicrowave background anisotropiesHigh Energy Physics - Phenomenology13. Climate actionDark radiationConstraintssymbolsHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological limits on neutrino unknowns versus low redshift priors

2015

Recent Cosmic Microwave Background (CMB) temperature and polarization anisotropy measurements from the Planck mission have significantly improved previous constraints on the neutrino masses as well as the bounds on extended models with massless or massive sterile neutrino states. However, due to parameter degeneracies, additional low redshift priors are mandatory in order to sharpen the CMB neutrino bounds. We explore here the role of different priors on low redshift quantities, such as the Hubble constant, the cluster mass bias, and the reionization optical depth $\tau$. Concerning current priors on the Hubble constant and the cluster mass bias, the bounds on the neutrino parameters may di…

PhysicsSterile neutrinoParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)010308 nuclear & particles physicsCosmic microwave backgroundFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesRedshiftMassless particlesymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencessymbolsPlanckNeutrino010303 astronomy & astrophysicsReionizationHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

2021-$H_0$ Odyssey: Closed, Phantom and Interacting Dark Energy Cosmologies

2021

Up-to-date cosmological data analyses have shown that \textit{(a)} a closed universe is preferred by the Planck data at more than $99\%$ CL, and \textit{(b)} interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accountin…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesImaging phantomGeneral Relativity and Quantum CosmologyQuantum electrodynamics0103 physical sciencesDark energyCosmological perturbation theoryBaryon acoustic oscillations010303 astronomy & astrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological forecasts on thermal axions, relic neutrinos and light elements

2022

One of the targets of future Cosmic Microwave Background and Baryon Acoustic Oscillation measurements is to improve the current accuracy in the neutrino sector and reach a much better sensitivity on extra dark radiation in the Early Universe. In this paper we study how these improvements can be translated into constraining power for well motivated extensions of the Standard Model of elementary particles that involve axions thermalized before the quantum chromodynamics (QCD) phase transition by scatterings with gluons. Assuming a fiducial $\Lambda$CDM cosmological model, we simulate future data for Stage-IV CMB-like and Dark Energy Spectroscopic Instrument (DESI)-like surveys and analyze a m…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyFOS: Physical sciencesAstronomy and Astrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic Astrophysicsearly Universedark matterHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Space and Planetary Sciencecosmic background radiation cosmological parameters dark matter early Universe cosmology: observationscosmology: observationsHigh Energy Physics::Experimentcosmological parametersAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The galaxy power spectrum take on spatial curvature and cosmic concordance

2020

The concordance of the $\Lambda$CDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter $\Omega_K<0$. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point…

Planckcosmological modelCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmological parametersSpatial curvatureDark matterCosmic microwave backgroundCosmic background radiationFOS: Physical sciencesanisotropycosmic background radiationAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)power spectrumCurvature01 natural sciencesGeneral Relativity and Quantum Cosmologydark matterCosmologyacousticsymbols.namesake0103 physical sciencesPlanck010303 astronomy & astrophysicsmedia_commonPhysics[PHYS.GRQC] Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]010308 nuclear & particles physicstemperatureAstronomy and AstrophysicsoscillationtensionUniverseGalaxybaryonCosmological tensionsSpace and Planetary Sciencecurvature[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]symbolsgalaxy[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsPhysics of the Dark Universe
researchProduct

Cosmological axion and neutrino mass constraints from Planck 2015 temperature and polarization data

2015

Axions currently provide the most compelling solution to the strong CP problem. These particles may be copiously produced in the early universe, including via thermal processes. Therefore, relic axions constitute a hot dark matter component and their masses are strongly degenerate with those of the three active neutrinos, as they leave identical signatures in the different cosmological observables. In addition, thermal axions, while still relativistic states, also contribute to the relativistic degrees of freedom, parameterised via $N_{eff}$. We present the cosmological bounds on the relic axion and neutrino masses, exploiting the full Planck mission data, which include polarization measure…

Particle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesake0103 physical sciencesPlanck010303 astronomy & astrophysicsAxionPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAxion Dark Matter ExperimentHot dark matterHigh Energy Physics::PhenomenologyObservablelcsh:QC1-999symbolsStrong CP problemNeutrinoAstrophysics - High Energy Astrophysical Phenomenalcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysics Letters B
researchProduct

Dark radiation sterile neutrino candidates after Planck data

2013

Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62(-0.48)(+0.50) at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N-eff active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m(nu,sterile)(eff) < 0.36 eV and 3.14 < N-eff < 4.15 at 95% …

AstrofísicaSterile neutrinocosmological neutrinosHadronCosmic microwave backgroundAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesPartícules (Física nuclear)symbols.namesake0103 physical sciencesneutrino properties; dark energy theory; neutrino theory; cosmological neutrinosdark energy theoryPlanck010303 astronomy & astrophysicsAxionAstrophysics::Galaxy Astrophysicsneutrino propertiesPhysicsCosmologia010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsDecoupling (cosmology)neutrino theory13. Climate actionDark radiationsymbolsHigh Energy Physics::ExperimentHubble's law
researchProduct

Axion cold dark matter: Status after Planck and BICEP2

2014

We investigate the axion dark matter scenario (ADM), in which axions account for all of the dark matter in the Universe, in light of the most recent cosmological data. In particular, we use the Planck temperature data, complemented by WMAP E-polarization measurements, as well as the recent BICEP2 observations of B-modes. Baryon Acoustic Oscillation data, including those from the Baryon Oscillation Spectroscopic Survey, are also considered in the numerical analyses. We find that, in the minimal ADM scenario, the full dataset implies that the axion mass m_a = 82.2 pm 1.1 {\mu}eV (corresponding to the Peccei-Quinn symmetry being broken at a scale f_a = (7.54 pm 0.10)*10^10 GeV), or m_a = 76.6 …

Particle physicsNuclear and High Energy PhysicsCold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencessymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)INFLATIONPlanckAxionPhysicsSpectral indexHigh Energy Physics::PhenomenologyFísicaPlanck temperatureINVISIBLE AXIONBARYON ACOUSTIC-OSCILLATIONS; DIGITAL SKY SURVEY; INVISIBLE AXION; COSMOLOGY; INFLATION; DISTANCEBaryonHigh Energy Physics - PhenomenologyCOSMOLOGYDISTANCEsymbolsDark energyAstronomiaDIGITAL SKY SURVEYBARYON ACOUSTIC-OSCILLATIONSAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological lepton asymmetry with a nonzero mixing angle \theta13

2012

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \theta_{13}, and show that for large \theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, …

Astrophysics and AstronomyNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectCosmic microwave backgroundCosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsEarly Universe7. Clean energy01 natural sciencesAsymmetryPartícules (Física nuclear)CosmologyBaryon asymmetryBig Bang nucleosynthesisPower Spectrum0103 physical sciences010306 general physicsTelescopemedia_commonPhysicsFlavor Oscillations010308 nuclear & particles physicsHigh Energy Physics::Phenomenology[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]ConstraintsParametersNeutrino DegeneracyHigh Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsLepton
researchProduct

Can interacting dark energy solve the $H_0$ tension?

2017

The answer is Yes! We indeed find that interacting dark energy can alleviate the current tension on the value of the Hubble constant $H_0$ between the Cosmic Microwave Background anisotropies constraints obtained from the Planck satellite and the recent direct measurements reported by Riess et al. 2016. The combination of these two datasets points towards an evidence for a non-zero dark matter-dark energy coupling $\xi$ at more than two standard deviations, with $\xi=-0.26_{-0.12}^{+0.16}$ at $95\%$ CL. However the $H_0$ tension is better solved when the equation of state of the interacting dark energy component is allowed to freely vary, with a phantom-like equation of state $w=-1.184\pm0.…

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Cosmic microwave backgroundFOS: Physical sciencesLambda-CDM modelCosmological constantAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminositysymbols.namesakeQuantum mechanics0103 physical sciencessymbolsDark energyPlanck[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]010303 astronomy & astrophysicsAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

New cosmological bounds on hot relics: Axions $\&amp;$ Neutrinos

2020

Axions, if realized in nature, can be copiously produced in the early universe via thermal processes, contributing to the mass-energy density of thermal hot relics. In light of the most recent cosmological observations, we analyze two different thermal processes within a realistic mixed hot-dark-matter scenario which includes also massive neutrinos. Considering the axion-gluon thermalization channel we derive our most constraining bounds on the hot relic masses $m_a &lt; 7.46$ eV and $\sum m_��&lt; 0.114$ eV both at 95 per cent CL; while studying the axion-pion scattering, without assuming any specific model for the axion-pion interactions and remaining in the range of validity of the chira…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectorsmedia_common.quotation_subjectDark matterCosmic background radiationFOS: Physical sciencescosmic background radiation; cosmological parameters; dark matter; early Universe; cosmology: observations;7. Clean energy01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Double beta decay0103 physical sciences010306 general physicsAxionmedia_commonPhysics010308 nuclear & particles physicsHot dark matterHigh Energy Physics::PhenomenologyAstronomy and AstrophysicsUniverseHigh Energy Physics - Phenomenology13. Climate actionSpace and Planetary ScienceStrong CP problemNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

In the realm of the Hubble tension—a review of solutions

2021

The $\Lambda$CDM model provides a good fit to a large span of cosmological data but harbors areas of phenomenology. With the improvement of the number and the accuracy of observations, discrepancies among key cosmological parameters of the model have emerged. The most statistically significant tension is the $4-6\sigma$ disagreement between predictions of the Hubble constant $H_0$ by early time probes with $\Lambda$CDM model, and a number of late time, model-independent determinations of $H_0$ from local measurements of distances and redshifts. The high precision and consistency of the data at both ends present strong challenges to the possible solution space and demand a hypothesis with en…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)satellite: PlanckPhysics and Astronomy (miscellaneous)gravitation: modelPhysics beyond the Standard ModelCosmic microwave backgroundFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic Astrophysicsbaryon: oscillation: acoustic01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologysymbols.namesakeTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)cosmological model: parameter space0103 physical sciencesstructurePlanckinflationcosmic background radiation: power spectrum010306 general physicsdark energyneutrino: interactionPhysicssupernova: Type IHubble constant010308 nuclear & particles physicsnew physicsmagnetic field: primordialtensionredshiftAstrophysics - Astrophysics of GalaxiesRedshiftrecombinationHigh Energy Physics - Phenomenology13. Climate actionAstrophysics of Galaxies (astro-ph.GA)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]relativisticsymbolsDark energy[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc][PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Phenomenology (particle physics)statisticalAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

Interacting dark energy in a closed universe

2020

Recent measurements of the Cosmic Microwave Anisotropies power spectra measured by the Planck satellite show a preference for a closed universe at more than $99 \%$ Confidence Level. Such a scenario is however in disagreement with several low redshift observables, including luminosity distances of Type Ia Supernovae. Here we show that Interacting Dark Energy (IDE) models can ease the discrepancies between Planck and Supernovae Ia data in a closed Universe. Therefore IDE cosmologies remain as very appealing scenarios, as they can provide the solution to a number of observational tensions in different fiducial cosmologies. The results presented here strongly favour broader analyses of cosmolo…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectCosmic background radiationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyLuminositysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Vacuum energy0103 physical sciencesPlanckFlatness (cosmology)010303 astronomy & astrophysicsmedia_commonPhysics010308 nuclear & particles physicsAstronomy and AstrophysicsUniverseRedshiftHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Space and Planetary SciencesymbolsDark energyAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society: Letters
researchProduct

Relic neutrinos, thermal axions, and cosmology in early 2014

2014

We present up to date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise Baryon Acoustic Oscillation (BAO) measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three active neutrino scenario, we find Sum m_nu &lt; 0.22 eV at 95% CL from the combination of CMB, BAO and Hubble Space Telescope measurements of the Hubble constant. A non zero value for the sum of the three active neutrino masses of about …

PhysicsSterile neutrinoParticle physicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundHigh Energy Physics::PhenomenologyCosmic background radiationFOS: Physical sciencesFísicaAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energyOmegaBaryonsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)13. Climate actionsymbolsAstronomiaNeutrinoAxionHubble's lawAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Future CMB Constraints on Early, Cold, or Stressed Dark Energy

2011

We investigate future constraints on early dark energy (EDE) achievable by the Planck and CMBPol experiments, including cosmic microwave background (CMB) lensing. For the dark energy, we include the possibility of clustering through a sound speed c_s^2 &lt;1 (cold dark energy) and anisotropic stresses parameterized with a viscosity parameter c_vis^2. We discuss the degeneracies between cosmological parameters and EDE parameters. In particular we show that the presence of anisotropic stresses in EDE models can substantially undermine the determination of the EDE sound speed parameter c_s^2. The constraints on EDE primordial energy density are however unaffected. We also calculate the future …

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsCosmic microwave backgroundCosmic background radiationFOS: Physical sciencesSpectral densityAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesMassless particlesymbols.namesake13. Climate action0103 physical sciencesDark energysymbolsNeutrinoPlanck010303 astronomy & astrophysicsQBLeptonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Dark Radiation in extended cosmological scenarios

2012

Recent cosmological data have provided evidence for a "dark" relativistic background at high statistical significance. Parameterized in terms of the number of relativistic degrees of freedom Neff, however, the current data seems to indicate a higher value than the one expected in the standard scenario based on three active neutrinos. This dark radiation component can be characterized not only by its abundance but also by its clustering properties, as its effective sound speed and its viscosity parameter. It is therefore crucial to study the correlations among the dark radiation properties and key cosmological parameters, as the dark energy equation of state or the running of the scalar spec…

PhysicsNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquation of state (cosmology)Hot dark matterScalar field dark matterFísicaFOS: Physical sciencesLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesThermodynamics of the universeDark radiation0103 physical sciencesDark energy010303 astronomy & astrophysicsDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Future constraints on the Hu-Sawicki modified gravity scenario

2011

We present current and future constraints on the Hu and Sawicki modified gravity scenario. This model can reproduce a late time accelerated universe and evade solar system constraints. While current cosmological data still allows for distinctive deviations from the cosmological constant picture, future measurements of the growth of structure combined with Supernova Ia luminosity distance data will greatly improve present constraints.

PhysicsNuclear and High Energy PhysicsGravity (chemistry)Solar SystemCosmology and Nongalactic Astrophysics (astro-ph.CO)media_common.quotation_subjectFOS: Physical sciencesFísicaAstrophysicsCosmological constantAstrophysics::Cosmology and Extragalactic AstrophysicsCosmologyUniverseSupernovaLuminosity distancemedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Constraints on massive sterile neutrino species from current and future cosmological data

2011

Sterile massive neutrinos are a natural extension of the Standard Model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states as well as on the number of sterile states. The so-called (3+2) models with three sub-eV active massive neutrinos plus two sub-eV massive sterile species is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, Big Bang Nucle…

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics::PhenomenologyCosmic background radiationFOS: Physical sciencesFísicaAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsDecoupling (cosmology)CosmologyHigh Energy Physics - Phenomenologysymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesissymbolsQuantitative Biology::Populations and EvolutionHigh Energy Physics::ExperimentNeutrinoNeutrino oscillationAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

Harrison-Zel'dovich primordial spectrum is consistent with observations

2010

Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity (the Harrison--Zel'dovich (HZ) spectrum). The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c.l.. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.

Inflation (cosmology)PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Scalar (mathematics)Spectral densityFOS: Physical sciencesFísicaAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsCMB cold spotGeneral Relativity and Quantum CosmologyCosmologyHigh Energy Physics - Phenomenologysymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Observational cosmologysymbolsPlanckAstrophysics - High Energy Astrophysical PhenomenaReionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Impact of general reionization scenarios on extraction of inflationary parameters

2010

Determination of whether the Harrison-Zel'dovich spectrum for primordial scalar perturbations is consistent with observations is sensitive to assumptions about the reionization scenario. In light of this result, we revisit constraints on inflationary models using more general reionization scenarios. While the bounds on the tensor-to-scalar ratio are largely unmodified, when different reionization schemes are addressed, hybrid models are back into the inflationary game. In the general reionization picture, we reconstruct both the shape and amplitude of the inflaton potential. We discuss how relaxing the simple reionization restriction affects the reconstruction of the potential through the c…

Inflation (cosmology)PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundCosmic background radiationAstrophysics::Instrumentation and Methods for AstrophysicsSpectral densityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsInflatonCMB cold spotCosmologyGeneral Relativity and Quantum CosmologyFísica nuclearReionizationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Improved cosmological bound on the thermal axion mass

2007

Relic thermal axions could play the role of an extra hot dark matter component in cosmological structure formation theories. By combining the most recent observational data we improve previous cosmological bounds on the axion mass m_a in the so-called hadronic axion window. We obtain a limit on the axion mass m_a &lt; 0.42eV at the 95% c.l. (m_a &lt; 0.72eV at the 99% c.l.). A novel aspect of the analysis presented here is the inclusion of massive neutrinos and how they may affect the bound on the axion mass. If neutrino masses belong to an inverted hierarchy scheme, for example, the above constraint is improved to m_a &lt; 0.38eV at the 95% c.l. (m_a &lt; 0.67eV at the 99% c.l.). Future da…

PhysicsAstrofísicaNuclear and High Energy PhysicsParticle physicsStructure formationAxion Dark Matter ExperimentPhysics::Instrumentation and DetectorsHot dark matterAstrophysics (astro-ph)Dark matterHigh Energy Physics::PhenomenologyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGeneral Relativity and Quantum CosmologyCosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Invariant massHigh Energy Physics::ExperimentNeutrinoAxion
researchProduct

Future weak lensing constraints in a dark coupled universe

2011

Coupled cosmologies can predict values for the cosmological parameters at low redshifts which may differ substantially from the parameters values within non-interacting cosmologies. Therefore, low redshift probes, as the growth of structure and the dark matter distribution via galaxy and weak lensing surveys constitute a unique tool to constrain interacting dark sector models. We focus here on weak lensing forecasts from future Euclid and LSST-like surveys combined with the ongoing Planck cosmic microwave background experiment. We find that these future data could constrain the dimensionless coupling to be smaller than a few $\times 10^{-2}$. The coupling parameter $\xi$ is strongly degener…

PhysicsNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Hot dark matterDark matterScalar field dark matterFísicaFOS: Physical sciencesLambda-CDM modelAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsCoupling (probability)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Dark energyWeak gravitational lensingDark fluidAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Sterile Neutrinos in Light of Recent Cosmological and Oscillation Data: a Multi-Flavor Scheme Approach

2008

Light sterile neutrinos might mix with the active ones and be copiously produced in the early Universe. In the present paper, a detailed multi-flavor analysis of sterile neutrino production is performed. Making some justified approximations allows us to consider not only neutrino interactions with the primeval medium and neutrino coherence breaking effects, but also oscillation effects arising from the presence of three light (mostly-active) neutrino states mixed with two heavier (mostly-sterile) states. First, we emphasize the underlying physics via an analytical description of sterile neutrino abundances that is valid for cases with small mixing between active and sterile neutrinos. Then,…

AstrofísicaSterile neutrinoParticle physicscosmological neutrinosAstrophysics::High Energy Astrophysical PhenomenaCosmic microwave backgroundFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energyMiniBooNEHigh Energy Physics - Phenomenology (hep-ph)astro-ph0103 physical sciencesScale structurephysics of the early universe010306 general physicsneutrino propertiesPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)Astronomy and Astrophysicshep-phHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentNeutrinoPhenomenology (particle physics)Coherence (physics)
researchProduct

Sterile neutrino models and nonminimal cosmologies

2012

Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant $w\ensuremath{\ne}\ensuremath{-}1$ dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, ($3+2$) massive neutrino models with $\ensuremath{\sim}0.5\text{ }\text{ }\mathrm{eV}$ sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with nu…

PhysicsNuclear and High Energy PhysicsSterile neutrinoParticle physics010308 nuclear & particles physicsmedia_common.quotation_subjectFísicaLambda-CDM modelAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyUniversePhysical cosmologyMiniBooNEGeneral Relativity and Quantum CosmologyBig Bang nucleosynthesis13. Climate action0103 physical sciencesDark energyHigh Energy Physics::ExperimentNeutrino010306 general physicsmedia_common
researchProduct

Future CMB cosmological constraints in a dark coupled universe

2010

Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC…

AstrofísicaAstrophysics and AstronomyNuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Cold dark matterDark matterScalar field dark matterFOS: Physical sciencesLambda-CDM modelGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyThermodynamics of the universeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciences010303 astronomy & astrophysicsPhysics010308 nuclear & particles physicsHot dark matterAstronomyHigh Energy Physics - PhenomenologyDark energyDark fluidAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Interacting dark energy in the early 2020s: a promising solution to the $H_0$ and cosmic shear tensions

2019

We examine interactions between dark matter and dark energy in light of the latest cosmological observations, focusing on a specific model with coupling proportional to the dark energy density. Our data includes Cosmic Microwave Background (CMB) measurements from the Planck 2018 legacy data release, late-time measurements of the expansion history from Baryon Acoustic Oscillations (BAO) and Supernovae Type Ia (SNeIa), galaxy clustering and cosmic shear measurements from the Dark Energy Survey Year 1 results, and the 2019 local distance ladder measurement of the Hubble constant $H_0$ from the Hubble Space Telescope. Considering Planck data both in combination with BAO or SNeIa data reduces th…

High Energy Physics - PhenomenologyCosmology and Nongalactic Astrophysics (astro-ph.CO)High Energy Physics - Phenomenology (hep-ph)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum CosmologyAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct