0000000001165522

AUTHOR

J. T. Karvonen

showing 7 related works from this author

Influence of Phonon dimensionality on Electron Energy Relaxation

2007

We studied experimentally the role of phonon dimensionality on electron-phonon (e-p) interaction in thin copper wires evaporated either on suspended silicon nitride membranes or on bulk substrates, at sub-Kelvin temperatures. The power emitted from electrons to phonons was measured using sensitive normal metal-insulator-superconductor (NIS) tunnel junction thermometers. Membrane thicknesses ranging from 30 nm to 750 nm were used to clearly see the onset of the effects of two-dimensional (2D) phonon system. We observed for the first time that a 2D phonon spectrum clearly changes the temperature dependence and strength of the e-p scattering rate, with the interaction becoming stronger at the …

Materials sciencePhononGeneral Physics and Astronomychemistry.chemical_elementFOS: Physical sciences02 engineering and technologyElectron01 natural scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceTunnel junctionCondensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsRelaxation (NMR)021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCopperMembraneSilicon nitridechemistryScattering rateCondensed Matter::Strongly Correlated Electrons0210 nano-technology
researchProduct

Electron–phonon interaction in a thin Al–Mn film

2006

Abstract Aluminum doped with manganese is an interesting novel material with applications in normal metal–insulator–superconductor (NIS) tunnel junction devices and transition-edge sensors at sub-Kelvin temperatures. We have studied the electron–phonon (e–p) coupling in a thin aluminum film doped with 1% manganese, with a measuring technique based on DC hot-electron effect. The electron temperature was measured with the help of symmetric normal metal–insulator–superconductor tunnel-junction pairs (SINIS-thermometers). Measurements show that the temperature dependence of the e–p interaction is not consistent with existing theories for disordered metals, but follows a higher power law.

PhysicsNuclear and High Energy PhysicsCondensed matter physicsDopingElectron phononchemistry.chemical_elementManganeseCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter::Materials SciencechemistryAluminiumTunnel junctionCondensed Matter::SuperconductivityElectron temperatureCoupling (piping)Condensed Matter::Strongly Correlated ElectronsInstrumentationNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Direct measurement of the electron‐phonon relaxation rate in thin copper films

2004

We have used normal metal-insulator-superconductor (NIS) tunnel junction pairs, known as SINIS structures, for ultrasensitive thermometry at sub-Kelvin temperatures. With the help of these thermometers, we have developed an ac-technique to measure the electron-phonon (e-p) scattering rate directly, without any other material or geometry dependent parameters, based on overheating the electron gas. The technique is based on Joule heating the electrons in the frequency range DC-10 MHz, and measuring the electron temperature in DC. Because of the nonlinearity of the electron-phonon coupling with respect to temperature, even the DC response will be affected, when the heating frequency reaches th…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical scienceschemistry.chemical_element02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesCopperSuperconductivity (cond-mat.supr-con)chemistryTunnel junctionScattering rateMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectron temperature010306 general physics0210 nano-technologyJoule heatingFermi gasOverheating (electricity)physica status solidi (c)
researchProduct

Response time of a thermometer based on normal metal–insulator–superconductor (NIS) tunnel junctions

2003

Abstract We have measured the thermal response of a superconductor–normal metal–superconductor (SINIS) tunnel junction structure at substrate temperature ∼60 mK by directly heating the electron system in the normal metal island. In our structure, we find the response time is determined by the electron–phonon coupling in the electron temperature range 300– 600 mK . By using AC heating, the cut-off frequency caused by this response time has been measured, showing that SINIS structures operate as a thermometer up to a few MHz in this temperature range.

SuperconductivityMaterials scienceCondensed matter physicsResponse timeSubstrate (electronics)Atmospheric temperature rangeCondensed Matter PhysicsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsTunnel junctionCondensed Matter::SuperconductivityThermometerThermalElectron temperaturePhysica E: Low-dimensional Systems and Nanostructures
researchProduct

Observation of disorder-induced weakening of electron-phonon interaction in thin noble-metal films

2003

We have used symmetric normal metal-insulator-superconductor (NIS) tunnel junction pairs, known as SINIS structures, for ultrasensitive thermometry in the temperature range 50 - 700 mK. By Joule heating the electron gas and measuring the electron temperature, we show that the electron-phonon (e-p) scattering rate in the simplest noble metal disordered thin films (Cu,Au) follows a $T^4$ temperature dependence, leading to a stronger decoupling of the electron gas from the lattice at the lowest temperatures. This power law is indicative e-p coupling mediated by vibrating disorder, in contrast to the previously observed $T^3$ and $T^2$ laws.

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsCondensed Matter - SuperconductivityFOS: Physical sciences02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesPower law3. Good healthElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Tunnel junctionCondensed Matter::SuperconductivityScattering rateLattice (order)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesElectron temperatureThin film010306 general physics0210 nano-technologyFermi gasPhysical Review B
researchProduct

Electron-phonon interaction in thin copper and gold films

2004

We have studied the electron-phonon (e-p) interaction in thin Cu and Au films at sub-Kelvin temperatures with the help of the hot electron effect, using symmetric normal metal-insulator-superconductor tunnel junction pairs as thermometers. By Joule heating the electron gas and measuring the electron and the lattice temperatures simultaneously, we show that the electron-phonon scattering rate follows a $T^{4}$ temperature dependence in both metals. The result is in accordance with the theory of e-p scattering in disordered films with vibrating boudaries and impurities, in contrast to the $T^{3}$-law expected for pure samples, and $T^{2}$-law for static disorder.

PhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringCondensed Matter - Superconductivitychemistry.chemical_elementFOS: Physical sciencesElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesCopper010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)chemistryImpurityTunnel junctionScattering rateCondensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physicsFermi gasJoule heating
researchProduct

Temperature Profile for Ballistic and Diffusive Phonon Transport in a Suspended Membrane with a Radial Symmetric Heat Source

2010

We have calculated the temperature profiles for phonon heat transport in a suspended membrane with a radially symmetric heat source in the two extreme cases of either fully ballistic or fully diffusive transport. Theoretical results confirm that it is possible to distinguish these two transport mechanisms from the radial temperature profiles alone. Models are also compared to experimental data measured with 40 nm thick, free standing silicon nitride membranes below 1 K by using tunnel junction (SINIS) thermometers. The measured temperature profile is qualitatively in agreement with the ballistic model.

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciencesCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
researchProduct