0000000001191545
AUTHOR
Kenichiro Mizohata
Alkylsilyl compounds as enablers of atomic layer deposition: analysis of (Et3Si)3As through the GaAs process
A new chemistry has been developed to deposit GaAs, the quintessential compound semiconductor. The ALD process is based on a dechlorosilylation reaction between GaCl3 and (Et3Si)3As. Characteristic ALD growth was demonstrated, indicating good applicability of the alkylsilyl arsenide precursor. ALD of GaAs produced uniform, amorphous and stoichiometric films with low impurity content. This was done with saturating growth rates and an easily controlled film thickness. Crystallization was achieved by annealing. Even though the growth rate strongly decreased with increasing deposition temperature, good quality film growth was demonstrated at 175 to 200 °C, indicating the presence of an ALD wind…
Determination of molecular stopping cross section of 12C, 16O, 28Si, 35Cl, 58Ni, 79Br, and 127I in silicon nitride
Abstract Silicon nitride is a technologically important material in a range of applications due to a combination of important properties. Ion beam analysis techniques, and in particular, heavy ion elastic recoil detection analysis can be used to determine the stoichiometry of silicon nitride films, which often deviates from the ideal Si3N4, as well as the content of impurities such as hydrogen, even in the presence of other materials or in a matrix containing heavier elements. Accurate quantification of IBA results depends on the basic data used in the data analysis. Quantitative depth profiling relies on the knowledge of the stopping power cross sections of the materials studied for the io…
Size dependent swift heavy ion induced Au nanoparticle elongation in SiO2 matrix
The elongation of spherical Au nanoparticles embedded in SiO2 under swift heavy ion (SHI) irradiation is an extensively studied phenomenon. The use of a TEM grid as a substrate facilitates the identification of the same nanoparticle before and after the irradiation. Since the underdensification of SiO2 inside the ion track plays a key role, the elongation is sensitive to the matrix material properties. Therefore, we studied the elongation process of SHI irradiated Au spherical nanoparticles of various diameters (5–80 nm) embedded either in atomic layer deposition (ALD) or plasma-enhanced chemical vapor deposition (PECVD) SiO2. The results show that a different elongation ratio is achieved d…
Atomic layer deposition of aluminum oxide on modified steel substrates
Abstract Al 2 O 3 thin films were grown by atomic layer deposition to thicknesses ranging from 10 to 90 nm on flexible steel substrates at 300 °C using Al(CH 3 ) 3 and H 2 O as precursors. The films grown to thicknesses 9–90 nm covered the rough steel surfaces uniformly, allowing reliable evaluation of their dielectric permittivity and electrical current densities with appreciable contact yield. Mechanical behavior of the coatings was evaluated by nanoindentation. The maximum hardness values of the Al 2 O 3 films on steel reached 12 GPa and the elastic modulus exceeded 280 GPa.