0000000001195200
AUTHOR
Filomena Forte
Current driven insulator-to-metal transition without Mott breakdown in Ca$_2$RuO$_4$
The electrical control of a material's conductivity is at the heart of modern electronics. Conventionally, this control is achieved by tuning the density of mobile charge carriers. A completely different approach is possible in Mott insulators such as Ca$_2$RuO$_4$, where an insulator-to-metal transition (IMT) can be induced by a weak electric field or current. This phenomenon has numerous potential applications in, e.g., neuromorphic computing. While the driving force of the IMT is poorly understood, it has been thought to be a breakdown of the Mott state. Using in operando angle-resolved photoemission spectroscopy, we show that this is not the case: The current-driven conductive phase ari…
Tuning interchain ferromagnetic instability in A2Cr3As3 ternary arsenides by chemical pressure and uniaxial strain
We analyze the effects of chemical pressure induced by alkali metal substitution and uniaxial strain on magnetism in the A2Cr3As3 (A = Na, K, Rb, Cs) family of ternary arsenides with quasi-one dimensional structure. Within the framework of the density functional theory, we predict that the non-magnetic phase is very close to a 3D collinear ferrimagnetic state, which realizes in the regime of moderate correlations, such tendency being common to all the members of the family with very small variations due to the different interchain ferromagnetic coupling. We uncover that the stability of such interchain ferromagnetic coupling has a non-monotonic behavior with increasing the cation size, bein…
Spin–orbit coupling effects on the electronic properties of the pressure-induced superconductor CrAs
We present the effects of spin-orbit coupling on the low-energy bands and Fermi surface of the recently discovered pressure-induced superconductor CrAs. We apply the L\"owdin down-folding procedure to a tight-binding hamiltonian that includes the intrinsic spin-orbit interaction, originating from the Cr 3d electrons as well as from As 4p ones. Our results indicate that As contributions have negligible effects, whereas the modifications to the band structure and the Fermi surface can be mainly ascribed to the Cr contribution. We show that the inclusion of the spin-orbit interaction allows for a selective removal of the band degeneracy due to the crystal symmetries, along specific high symmet…
Anomalous orbital moment in the ferromagnetic phase of the Sr4Ru3O10
The coupling of spin and orbital degrees of freedom in the trilayer Sr4Ru3O10 sets a long-standing puzzle, due to the peculiar anisotropic coexistence of out-of-plane ferromagnetism and in-plane metamagnetism. Recently, the induced magnetic structure by in-plane applied fields has been investigated by means of spin-polarized neutron diffraction, which allowed to extract a substantial orbital component of the magnetic densities at Ru sites. It has been argued that the latter is at the origin of the evident layer dependent magnetic anisotropy, where the inner layers carry larger magnetic moments than the outer ones. We present a spin-polarized neutron diffraction study in order to characteriz…
Spin-orbital polarization of Majorana edge states in oxides nanowires
We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and or…
Tuning nodal line semimetals in trilayered systems
We investigate two-dimensional trilayered quantum systems with multi-orbital conduction bands by focusing on the role played by the layer degree of freedom in setting the character of nodal line semimetals. The layer index can label the electronic states where the electrons reside in the unit cell and can enforce symmetry constraints in the electronic structure by protecting bands crossing. We demonstrate that both the atomic spin-orbit coupling and the removal of local orbital degeneracy can lead to different types of electronic transitions with nodal lines that undergo a changeover from a loop structure enclosing the center of the Brillouin zone to pockets winding around multiple high sym…
Interplay Between Spin-Orbit Coupling and Structural Deformations in Heavy Transition-Metal Oxides with Tetrahedral Coordination
Multiple band crossings and Fermi surface topology: Role of double nonsymmorphic symmetries in MnP-type crystal structures
We use relativistic ab-initio methods combined with model Hamiltonian approaches to analyze the normal-phase electronic and structural properties of the recently discovered WP superconductor. Remarkably, the outcomes of such study can be employed to set fundamental connections among WP and the CrAs and MnP superconductors belonging to the same space group. One of the key features of the resulting electronic structure is represented by the occurrence of multiple band crossings along specific high symmetry lines of the Brilloiun zone. In particular, we demonstrate that the eight-fold band degeneracy obtained along the SR path at (kx,ky)=(Pi,Pi) is due to inversion-time reversal invariance and…
Intra-chain collinear magnetism and inter-chain magnetic phases in Cr3As3-K-based materials
We perform a comparative study of the KCr3As3 and the K2Cr3As3 quasi 1D compounds, and show that the strong interplay between the lattice and the spin degrees of freedom promotes a new collinear ferrimagnetic ground state within the chains in presence of intrachain antiferromagnetic couplings. We propose that the interchain antiferromagnetic coupling in KCr3As3 plays a crucial role for the experimentally observed spin-glass phase with low critical temperature. In the same region of the parameter space, we predict K2Cr3As3 to be non-magnetic but on the verge of the magnetism, sustaining interchain ferromagnetic spin fluctuations while the intrachain spin fluctuations are antiferromagnetic.
A minimal tight-binding model for the quasi-one-dimensional superconductor K2Cr3As3
We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band struc…