0000000001198790
AUTHOR
L. Canete
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…
Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F
We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental resu…
Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculations
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…
Excited states in Br87 populated in β decay of Se87
First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…
β decay of Cd127 and excited states in In127
A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.
High-precision electron-capture Q value measurement of 111In for electron-neutrino mass determination
A precise determination of the ground state $^{111}$In ($9/2^+$) electron capture to ground state of $^{111}$Cd ($1/2^+$) $Q$ value has been performed utilizing the double Penning trap mass spectrometer, JYFLTRAP. A value of 857.63(17) keV was obtained, which is nearly a factor of 20 more precise than the value extracted from the Atomic Mass Evaluation 2020 (AME2020). The high-precision electron-capture $Q$ value measurement along with the nuclear energy level data of 866.60(6) keV, 864.8(3) keV, 855.6(10) keV, and 853.94(7) keV for $^{111}$Cd was used to determine whether the four states are energetically allowed for a potential ultra-low $Q$-value $\beta^{}$ decay or electron-capture deca…
High-Precision Q -Value Measurement Confirms the Potential of Cs 135 for Absolute Antineutrino Mass Scale Determination
Single and Double Beta-DecayQValues among the TripletZr96,Nb96, andMo96
The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16) keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…
Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88
Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…
Measurement of the 2+--0+ ground-state transition in the ß decay of 20F
12 pags., 16 figs., 4 tabs.
Measurement of the 2+→0+ ground-state transition in the β decay of 20F
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…
Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb
The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…
β - and γ -spectroscopy study of Pd119 and Ag119
High-precision mass measurements for the isobaric multiplet mass equation atA= 52
Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…
High-precision measurement of the mass difference between 102Pd and 102Ru
Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…
Precision mass measurements of Fe67 and Co69,70 : Nuclear structure toward N=40 and impact on r -process reaction rates
Accurate mass measurements of neutron-rich iron and cobalt isotopes $^{67}\mathrm{Fe}$ and $^{69,70}\mathrm{Co}$ have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the $^{69,70}\mathrm{Co}$ ground states and the $1/{2}^{\ensuremath{-}}$ isomer in $^{69}\mathrm{Co}$ have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond $N=40$. The moderate $N=40$ subshell gap has been found to weaken below $^{68}\mathrm{Ni}$, a region known for shape coexistence and increased collectivity. The excitation energy for…
Precision Ga71–Ge71 mass-difference measurement
Abstract The Ga 71 ( ν e , e − ) Ge 71 reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in Ga 71 .
Precision mass measurements of $^{67}$Fe and $^{69,70}$Co : Nuclear structure toward N=40 and impact on r -process reaction rates
International audience; Accurate mass measurements of neutron-rich iron and cobalt isotopes Fe67 and Co69,70 have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the Co69,70 ground states and the 1/2− isomer in Co69 have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below Ni68, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in Co69 has been determined for the first tim…
Radioactive ion beam manipulation at the IGISOL-4 facility
The IGISOL-4 facility in the JYFL Accelerator Laboratory of the University of Jyvaskyla (JYFL-ACCLAB) produces low-energy radioactive ion beams, primarily for nuclear spectroscopy, utilizing an ion guide-based, ISOL-type mass separator. Recently, new ion manipulation techniques have been introduced at the IGISOL-4 including the application of the PI-ICR (Phase-Imaging Ion Cyclotron Resonance) technique at the JYFLTRAP Penning trap, as well as commissioning of a Multi-Reflection Time-Of-Flight (MR-TOF) separator/spectrometer. The successful operation of the MR-TOF also required significant improvement of the Radio-Frequency Quadrupole (RFQ) cooler and buncher device beam pulse time structure…
High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination
The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…
Low-spin excitations in 89Br populated in β−decay of 89Se
Low-spin, excited states of the 89Br nucleus, populated in β− decay of 89Se have been studied for the first time. The 89Se nuclei were produced in proton-induced fission of natural thorium using the IGISOL facility and separated using a dipole magnet and the coupled JYFLTRAP Penning trap. Gamma radiation following the β− decay of 89Se was measured with an array of high-resolution germanium detectors. Levels scheme of 89Br was extended by 12 new levels and 31 new γ transitions. Spin-parity (3/2+) has been proposed for the ground state of the 89Se mother nucleus, replacing the (5/2+) assignment reported in data bases. The observed Gamow-Teller β− transition to the 1754.5-keV level indicates a…
High-precision mass measurements of 25Al and 30P at JYFLTRAP
The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( $\Delta = -8915.962(63)$ keV) and 30P ( $\Delta = -20200.854(64)$ keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but $ \approx$ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p, $ \gamma$ )26Si and 30P(p, $ \gamma$ )31S . In this work, $ Q_{(p,\gamma)} = 5513.99(13)$ keV and $ Q_{(p,\gamma)} = 6130.64(24)$ keV were obtained for 25Al and 30P , respectivel…
High-precision mass measurements for the rp-process at JYFLTRAP
The double Penning trap JYFLTRAP at the University of Jyvaskyla has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp) process. A precise mass measurement of 31 Cl is essential to estimate the waiting point condition of 30 S in the rp-process occurring in type I x-ray bursts (XRBs). The mass-excess of 31 C1 measured at JYFLTRAP, -7034.7(3.4) keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy S p determined from the new mass-excess value confirmed that 30 S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52 Co effects both 51 Fe( p,γ ) 52 C…
Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP
The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…
New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical 25Al(p,γ)26Si reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic 26Al ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in 26Si, that govern the rate of the 25Al(p,γ) reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the 26Si mirror nucleus 26Mg. We have measured the lifetime of the 3+, 6.125-MeV state in 26Mg to be 19(3)fs and provide compelling evidence for the existence of a 1− state in the T=1,A=26 system, indicating a previously unaccounted for ℓ=1 resonance in the 25Al(p,γ) reaction. Using the present…
Precision mass measurements of Fe 67 and Co 69 , 70 : Nuclear structure toward N = 40 and impact on r -process reaction rates
β- and γ-spectroscopy study of 119Pd and 119Ag
Neutron-rich 119Pd nuclei were produced in fission of natural uranium, induced by 25-MeV protons. Fission fragments swiftly extracted with the Ion Guide Isotope Separation On-Line method were mass separated using a dipole magnet and a Penning trap, providing mono-isotopic samples of 119Pd. Their β− decay was measured with γγ- and βγ-spectroscopy methods using low-energy germanium detectors and a thin plastic scintillator. Two distinct nuclear-level structures were observed in 119Ag, based on the 1/2− and 7/2+ isomers reported previously. The β−-decay work was complemented by a prompt-γ study of levels in 119Ag populated in spontaneous fission of 252Cf, performed using the Gammasphere array …
Penning-trap-assisted study of excitations in $^{88}$Br populated in β decay of $^{88}$Se
Excited levels of 88Br populated in the β decay of 88Se have been studied by means of βγ and γ γ spectroscopy methods. Neutron-rich parent 88Se nuclei were produced with proton-induced fission of 238U using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyvaskyl ¨ a. The level scheme ¨ of 88Br has been constructed and log f t values of levels were determined. The ground-state spin of 88Br is now firmly determined to be 1−. Low-energy levels in 88Br were interpreted as members of the πp3/2(νd5/2) 3, πp−1 3/2(νd5/2) 3, πf −1 5/2 (νd5/2) 3, and…
High-precision $Q$-value measurement confirms the potential of $^{135}$Cs for antineutrino-mass detection
The ground-state-to-ground-state $\beta$-decay $Q$-value of $^{135}\textrm{Cs}(7/2^+)\to\,^{135}\textrm{Ba}(3/2^+)$ was directly measured for the first time utilizing the Phase-Imaging Ion-Cyclotron Resonance (PI-ICR) technique at the JYFLTRAP Penning-trap setup. It is the first direct determination of this $Q$-value and its value of 268.66(30)\,keV is a factor of three more precise than the currently adopted $Q$-value in the Atomic Mass Evaluation 2016. Moreover, the $Q$-value deduced from the $\beta$-decay endpoint energy has been found to deviate from our result by approximately 6 standard deviations. The measurement confirms that the first-forbidden unique $\beta^-$-decay transition $^{…
A new off-line ion source facility at IGISOL
An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.
High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL
An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…
Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data
For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…
First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107
Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.
High-Precision Q-Value Measurement Confirms the Potential of 135Cs for Absolute Antineutrino Mass Scale Determination
The ground-state-to-ground-state β-decay Q value of Cs135(7/2+)→Ba135(3/2+) has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between Cs135(7/2+) and Ba135(3/2+). With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted Q value in the Atomic Mass Evaluation 2016. The measurement confirms that the first-forbidden unique β--decay transition Cs135(7/2+)→Ba135(11/2-) is a candidate for antineutrino mass measurements wit…
Excited states in 87Br populated in β decay of 87Se
Excited levels in 87Br, populated in β decay of 87Se, have been studied by means of γ-ray spectroscopy using an array of broad energy Ge detectors. 87Se nuclei were produced by irradiating a natural Th target with 25-MeV protons. Fission products were extracted from the target chamber using the IGISOL technique, then separated on a dipole magnet and Penning trap (JYFLTRAP) setup. The scheme of excited levels of 87Br has been significantly extended. 114 new transitions and 51 new levels were established. β feedings and log(ft) values of levels were determined. The upper limit for β feeding to the ground state of 87Br was determined to be 23(5)%. Ground state spin and parity 5/2− was confirme…
Mass of astrophysically relevantCl31and the breakdown of the isobaric multiplet mass equation
The mass of $^{31}\mathrm{Cl}$ has been measured with the JYFLTRAP double-Penning-trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, $\ensuremath{-}7034.7(34)$ keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the $T=3/2$ quartet at $A=31$ fails $({\ensuremath{\chi}}_{n}^{2}=11.6)$ and a nonzero cubic term, $d=\ensuremath{-}3.5(11)$ keV, is obtained when the new mass value is adopted. $^{31}\mathrm{Cl}$ has been found to be less proton-bound, with a proton separation energy of ${S}_{p}=264.6(34)$ keV. Energies for the excited states in $^{31…
Mass Measurements for the rp Process
Measurement of the 2+→0+ ground-state transition in the β decay of F 20
| openaire: EC/H2020/654002/EU//ENSAR2 We report the first detection of the second-forbidden, nonunique, 2(+) -> 0(+), ground-state transition in the beta decay of F-20. A low-energy, mass-separated F-20(+) beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the beta spectrum measured using a magnetic transporter and a plastic-scintillator detector. The beta-decay branching ratio inferred from the measurement is b(beta) = [0.41 +/- 0.08(stat) +/- 0.07(sys)] x 10(-5) corresponding to log ft = 10.89(11), making this one of the strongest second-forbidden, nonunique beta transitions ever measured. The experimental result is supported by shell-mode…
Measurement of the 2 + → 0 + ground-state transition in the β decay of F 20
Production of Sn and Sb isotopes in high-energy neutron induced fission of natU
The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a …
Evidence of a sudden increase in the nuclear size of proton-rich silver-96
Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…
The MORA project
The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.
Novel Penning-trap techniques reveal isomeric states in $^{128}$In and $^{130}$In for the first time
Isomeric states in $^{128}$In and $^{130}$In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing novel ion manipulation techniques, different states were separated and masses of six beta-decaying states were measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the $15^-$ isomer in $^{128}$Sn has been discovered in $^{128}$In at $1797.6(20)$ keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a $16^+$ spin-trap isomer. In $^{130}$In, the lowest-lying $…
Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer
The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb $ ^{+}$ and 87 Rb $ ^{+}$ ions with well-known mass values show that relative uncertainties $ \Delta m/m \leq 7\cdot 10^{-10}$ are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and …
First β-decay scheme of 107Nb : New insight into the low-energy levels of 107Mo
Monoisotopic samples of 107Nb nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform β- and γ-coincidence spectroscopy of 107Mo. Gamma transitions and excited levels in 107Mo were observed in β decay for the first time. Spin and parity 1/2+ for the ground state of 107Mo is proposed, to replace the previous 5/2+ assignment. The experimental β-decay half-life of 107Nb was estimated to be 0.27±0.02 s. peerReviewed
Mass of astrophysically relevant 31Cl and the breakdown of the isobaric multiplet mass equation
The mass of $^{31}$Cl has been measured with the JYFLTRAP double Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, -7034.7(34) keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the T=3/2 quartet at A=31 fails ($\chi^2_n$=11.6) and a non-zero cubic term, d=-3.5(11) keV, is obtained when the new mass value is adopted. $^{31}$Cl has been found to be less proton-bound with a proton separation energy of $S_p$=265(4) keV. Energies for the excited states in $^{31}$Cl and the photodisintegration rate on $^{31}$Cl have been determined with s…
Three beta-decaying states in In and In resolved for the first time using Penning-trap techniques
Isomeric states in $^{128}$In and $^{130}$In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in $^{128}$In and $^{130}$In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the 15− isomer in $^{128}$Sn has been discovered in $^{128}$In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16+ spin-trap isomer. In …
β - and γ -spectroscopy study of Pd 119 and Ag 119
Precision mass measurements of 67Fe and 69,70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates
Accurate mass measurements of neutron-rich iron and cobalt isotopes 67Fe and 69,70Co have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the 69,70Co ground states and the 1/2− isomer in 69Co have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below 68Ni, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in 69Co has been determined for the first time and is compared to lar…
Isomeric fission yield ratios for odd-mass Cd and In isotopes using the Phase-Imaging Ion-Cyclotron-Resonance technique
Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance technique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square a…
New constraints on the Al 25 (p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical Al25(p,γ)Si26 reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic Al26 ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in Si26, that govern the rate of the Al25(p,γ) reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the Si26 mirror nucleus Mg26. We have measured the lifetime of the 3+, 6.125-MeV state in Mg26 to be 19(3)fs and provide compelling evidence for the existence of a 1- state in the T=1,A=26 system, indicating a previously unaccounted for=1 resonance in the Al25(p,γ) reaction. Using the presently…
Mass measurements towards doubly magic Ni-78 : Hydrodynamics versus nuclear mass contribution in core-collapse supernovae
International audience; We report the first high-precision mass measurements of the neutron-rich nuclei 74,75Ni and the clearly identified ground state of 76Cu, along with a more precise mass-excess value of 78Cu, performed with the double Penning trap JYFLTRAP at the Ion Guide Isotope Separator On-Line (IGISOL) facility. These new results lead to a quantitative estimation of the quenching for the N=50 neutron shell gap. The impact of this shell quenching on core-collapse supernova dynamics is specifically tested using a dedicated statistical equilibrium approach that allows a variation of the mass model independent of the other microphysical inputs. We conclude that the impact of nuclear m…
Measurement of the 2+→0+ ground-state transition in the β decay of F20
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…
β decay of Cd 127 and excited states in In 127
22 pags., 8 figs., 4 tabs., 1 app.
QEC value of the superallowed β emitter Sc42
Precise measurements of superallowed ${0}^{+}\ensuremath{\rightarrow}{0}^{+}$ $\ensuremath{\beta}$ decay presently provide the most precise value for the weak mixing amplitude ${V}_{u\phantom{\rule{0}{0ex}}d}$. As the largest element of the CKM matrix, ${V}_{u\phantom{\rule{0}{0ex}}d}$ is a critical piece of the Standard Model of the electroweak interaction. The new, precise Penning-trap mass measurement of the decay energy for the superallowed transition in ${}^{42}$Sc opens the door for a much more precise $f\phantom{\rule{0}{0ex}}t$ value determination if its half-life can be measured more precisely as well.
New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions
The astrophysical $^{25}\mathrm{Al}(p,\ensuremath{\gamma})\phantom{\rule{0.16em}{0ex}}^{26}\mathrm{Si}$ reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic $^{26}\mathrm{Al}$ ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in $^{26}\mathrm{Si}$, that govern the rate of the $^{25}\mathrm{Al}(p,\ensuremath{\gamma})$ reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the $^{26}\mathrm{Si}$ mirror nucleus $^{26}\mathrm{Mg}$. We have measured the lifetime of the ${3}^{+}$, 6.125-MeV state in $^{26}\mathrm{Mg}$ to be $19(3)\phanto…