0000000001204237

AUTHOR

Hannes Luiro

showing 13 related works from this author

Asymptotic Lipschitz regularity for tug-of-war games with varying probabilities

2018

We prove an asymptotic Lipschitz estimate for value functions of tug-of-war games with varying probabilities defined in $\Omega\subset \mathbb R^n$. The method of the proof is based on a game-theoretic idea to estimate the value of a related game defined in $\Omega\times \Omega$ via couplings.

osittaisdifferentiaaliyhtälötPure mathematicsComputer Science::Computer Science and Game TheoryTug of war010102 general mathematicslocal Lipschitz estimatesLipschitz continuity01 natural sciencesnormalized p(x)-laplaciandynamic programming principle010104 statistics & probabilityMathematics - Analysis of PDEsFOS: Mathematicspeliteoria91A05 91A15 91A50 35B65 35J60 35J92stochastic games0101 mathematicsValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

Regularity for nonlinear stochastic games

2015

We establish regularity for functions satisfying a dynamic programming equation, which may arise for example from stochastic games or discretization schemes. Our results can also be utilized in obtaining regularity and existence results for the corresponding partial differential equations. peerReviewed

viscosity solutionsDiscretization01 natural sciencesMathematics - Analysis of PDEsBellman equationComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsApplied mathematicstug-of-war0101 mathematicsMathematics - Optimization and ControlMathematical PhysicsMathematicsstokastiset prosessitPartial differential equationApplied Mathematics91A15 35J92 35B65 35J60 49N60010102 general mathematicsta111dynamic programming principletug-of-war with noise with space dependent probabilities010101 applied mathematicsNonlinear systemOptimization and Control (math.OC)p-LaplaceAnalysisAnalysis of PDEs (math.AP)
researchProduct

On the regularity of the Hardy-Littlewood maximal operator on subdomains of ℝn

2010

AbstractWe establish the continuity of the Hardy-Littlewood maximal operator on W1,p(Ω), where Ω ⊂ ℝn is an arbitrary subdomain and 1 < p < ∞. Moreover, boundedness and continuity of the same operator is proved on the Triebel-Lizorkin spaces Fps,q (Ω) for 1 < p,q < ∞ and 0 < s < 1.

Sobolev spaceDiscrete mathematicsPure mathematicsGeneral MathematicsOperator (physics)Maximal operatorMaximal functionMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct

On the continuity of discrete maximal operators in Sobolev spaces

2014

We investigate the continuity of discrete maximal operators in Sobolev space W 1;p (R n ). A counterexample is given as well as it is shown that the continuity follows under certain sucient assumptions. Especially, our research verifies that for the continuity in Sobolev spaces the role of the partition of the unity used in the construction of the maximal operator is very delicate.

Discrete mathematicsSobolev spaceGeneral Mathematicsta111Maximal operatorPartition (number theory)Modulus of continuityCounterexampleSobolev inequalitySobolev spaces for planar domainsMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

The variation of the maximal function of a radial function

2017

We study the problem concerning the variation of the Hardy-Littlewood maximal function in higher dimensions. As the main result, we prove that the variation of the non-centered Hardy-Littlewood maximal function of a radial function is comparable to the variation of the function itself.

Mathematics::Functional Analysis42B25 46E35 26A45maximal functionGeneral Mathematicsta111010102 general mathematicsMathematics::Classical Analysis and ODEsradial functionharmoninen analyysi01 natural sciences010101 applied mathematicsCombinatoricsRadial functionMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Maximal operatorMaximal function0101 mathematicsfunktionaalianalyysi42B25Variation (astronomy)26A45MathematicsArkiv för Matematik
researchProduct

Local maximal operators on fractional Sobolev spaces

2016

In this note we establish the boundedness properties of local maximal operators MG on the fractional Sobolev spaces Ws;p(G) whenever G is an open set in Rn, 0 < s < 1 and 1 < p < 1. As an application, we characterize the fractional (s;p)-Hardy inequality on a bounded open set by a Maz'ya-type testing condition localized to Whitney cubes. pq(G) whenever G is an open set in R n , 0 < s < 1 and 1 < p;q <1. Our main focus lies in the mapping properties of MG on a fractional Sobolev space W s;p (G) with 0 < s < 1 and 1 < p < 1, see Section 2 for the denition or (3) for a survey of this space. The intrinsically dened function space W s;p (G) on a given domain G coincides with the trace space F s …

Trace spaceFunction spaceGeneral MathematicsOpen setSpace (mathematics)01 natural sciencesDomain (mathematical analysis)CombinatoricsHardy inequality0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics46E350101 mathematicsfractional Sobolev spaceMathematicsMathematics::Functional Analysista111010102 general mathematicsMathematical analysis42B25 46E35 47H99Functional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceSection (category theory)Mathematics - Classical Analysis and ODEsBounded function47H99010307 mathematical physics42B25local maximal operator
researchProduct

Gradient and Lipschitz Estimates for Tug-of-War Type Games

2021

We define a random step size tug-of-war game and show that the gradient of a value function exists almost everywhere. We also prove that the gradients of value functions are uniformly bounded and converge weakly to the gradient of the corresponding $p$-harmonic function. Moreover, we establish an improved Lipschitz estimate when boundary values are close to a plane. Such estimates are known to play a key role in the higher regularity theory of partial differential equations. The proofs are based on cancellation and coupling methods as well as an improved version of the cylinder walk argument. peerReviewed

osittaisdifferentiaaliyhtälöt91A15 35B65 35J92gradient regularityApplied MathematicsTug of warMathematical analysisstochastic two player zero-sum gameType (model theory)Lipschitz continuityComputational MathematicsMathematics - Analysis of PDEsLipschitz estimateBellman equationtug-of-war with noiseFOS: MathematicsUniform boundednesspeliteoriaAlmost everywherep-LaplaceValue (mathematics)AnalysisAnalysis of PDEs (math.AP)Mathematicsstokastiset prosessit
researchProduct

On the continuous and discontinuous maximal operators

2018

Abstract In the first part of this paper we study the regularity properties of a wide class of maximal operators. These results are used to show that the spherical maximal operator is continuous W 1 , p ( R n ) ↦ W 1 , p ( R n ) , when p > n n − 1 . Other given applications include fractional maximal operators and maximal singular integrals. On the other hand, we show that the restricted Hardy–Littlewood maximal operator M λ , where the supremum is taken over the cubes with radii greater than λ > 0 , is bounded from L p ( R n ) to W 1 , p ( R n ) but discontinuous.

0301 basic medicineClass (set theory)Applied Mathematicsta111010102 general mathematicsoperatorsSingular integralcontinuity01 natural sciencesInfimum and supremumCombinatorics03 medical and health sciences030104 developmental biologySobolev spacesBounded functionjatkuvuusMaximal operator0101 mathematicsmaximal operatorAnalysisoperaattorit (matematiikka)MathematicsNonlinear Analysis
researchProduct

Harnack's inequality for p-harmonic functions via stochastic games

2013

We give a proof of asymptotic Lipschitz continuity of p-harmonious functions, that are tug-of-war game analogies of ordinary p-harmonic functions. This result is used to obtain a new proof of Lipsc...

Pure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Mathematics::Analysis of PDEs16. Peace & justiceLipschitz continuity01 natural sciences010101 applied mathematicsHarnack's principleHarmonic functionInfinity Laplacian0101 mathematicsEquivalence (measure theory)AnalysisHarnack's inequalityMathematicsCommunications in Partial Differential Equations
researchProduct

The Variation of the Fractional Maximal Function of a Radial Function

2017

Abstract In this article, we study the regularity of the non-centered fractional maximal operator $M_{\beta}$. As the main result, we prove that there exists $C(n,\beta)$ such that if $q=n/(n-\beta)$ and $f$ is radial function, then $\|DM_{\beta}f\|_{L^{q}({\mathbb{R}^n})}\leq C(n,\beta)\|Df\|_{L^{1}({\mathbb{R}^n})}$. The corresponding result was previously known only if $n=1$ or $\beta=0$. Our proofs are almost free from one-dimensional arguments. Therefore, we believe that the new approach may be very useful when trying to extend the result for all $f\in W^{1,1}({\mathbb{R}^n})$.

CombinatoricsRadial functionGeneral Mathematics010102 general mathematicsMaximal operatorBeta (velocity)Maximal function0101 mathematics01 natural sciencesMathematicsInternational Mathematics Research Notices
researchProduct

Continuity of the maximal operator in Sobolev spaces

2006

We establish the continuity of the Hardy-Littlewood maximal operator on Sobolev spaces W 1,p (R n ), 1 < p < ∞. As an auxiliary tool we prove an explicit formula for the derivative of the maximal function.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsMaximal operatorMaximal functionDerivativeSobolev inequalityMathematicsProceedings of the American Mathematical Society
researchProduct

Gradient walks and $p$-harmonic functions

2017

osittaisdifferentiaaliyhtälötMarkov chainApplied MathematicsGeneral Mathematicsta111010102 general mathematics01 natural sciences010101 applied mathematicsHarmonic functionpartial differential equationsstochastic processesStatistical physics0101 mathematicsstokastiset prosessitMathematicsProceedings of the American Mathematical Society
researchProduct

Regularity properties of maximal operators

2008

matematisk analysmatemaattinen analyysi
researchProduct