0000000001216671

AUTHOR

Stefano Maria Mari

showing 15 related works from this author

Nanoseconds Timing System Based on IEEE 1588 FPGA Implementation

2019

Clock synchronization procedures are mandatory in most physical experiments where event fragments are readout by spatially dislocated sensors and must be glued together to reconstruct key parameters (e.g. energy, interaction vertex etc.) of the process under investigation. These distributed data readout topologies rely on an accurate time information available at the frontend, where raw data are acquired and tagged with a precise timestamp prior to data buffering and central data collecting. This makes the network complexity and latency, between frontend and backend electronics, negligible within upper bounds imposed by the frontend data buffer capability. The proposed research work describ…

EthernetFOS: Computer and information sciencesNuclear and High Energy PhysicsEye diagram; field-programmable gate arrays (FPGAs); front-end electronics; hardware; synchronization; timing systemfront-end electronicEye diagramtiming systemSerial communicationData bufferNetwork topology01 natural sciencesClock synchronizationNOComputer Science - Networking and Internet ArchitecturePE2_20103 physical sciencesSynchronization (computer science)hardwareElectrical and Electronic EngineeringNetworking and Internet Architecture (cs.NI)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica Sperimentalefront-end electronicsNuclear Energy and Engineeringfield-programmable gate arrays (FPGAs)Precision Time ProtocolbusinesssynchronizationComputer hardwareData link layer
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

Charge reconstruction in large-area photomultipliers

2018

Large-area PhotoMultiplier Tubes (PMT) allow to efficiently instrument Liquid Scintillator (LS) neutrino detectors, where large target masses are pivotal to compensate for neutrinos' extremely elusive nature. Depending on the detector light yield, several scintillation photons stemming from the same neutrino interaction are likely to hit a single PMT in a few tens/hundreds of nanoseconds, resulting in several photoelectrons (PEs) to pile-up at the PMT anode. In such scenario, the signal generated by each PE is entangled to the others, and an accurate PMT charge reconstruction becomes challenging. This manuscript describes an experimental method able to address the PMT charge reconstruction …

PhotomultiplierLiquid detectorsvisible and IR photons (vacuum) (photomultipliers HPDs others)Physics - Instrumentation and Detectorsgas and liquid scintillators)Physics::Instrumentation and DetectorsPhoton detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)FOS: Physical sciencesvisible and IR photons (vacuum) (photomultipliers HPDsScintillatorvisible and IR photons (vacuum) (photomultipliers01 natural sciencesParticle detectorNOsymbols.namesakeOptics0103 physical sciencesCalorimeter methods010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsPhysicsscintillation and light emission processes (solid gas and liquid scintillators)010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleWiener filterDetectorReconstruction algorithmScintillators scintillation and light emission processes (solid gas and liquid scintillators)Instrumentation and Detectors (physics.ins-det)Scintillatorscintillation and light emission processes (solidCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others)Neutrino detectorHPDsCalorimeter methodScintillatorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)symbolsLiquid detectorCalorimeter methods; Liquid detectors; Photon detectors for UV visible and IR photons (vacuum) (photomultipliers HPDs others); Scintillators scintillation and light emission processes (solid gas and liquid scintillators)Deconvolutionbusinessothers)scintillation and light emission processes (solid gas and liquid scintillators)
researchProduct

GIGJ: a crustal gravity model of the Guangdong Province for predicting the geoneutrino signal at the JUNO experiment

2019

Gravimetric methods are expected to play a decisive role in geophysical modeling of the regional crustal structure applied to geoneutrino studies. GIGJ (GOCE Inversion for Geoneutrinos at JUNO) is a 3D numerical model constituted by ~46 x 10$^{3}$ voxels of 50 x 50 x 0.1 km, built by inverting gravimetric data over the 6{\deg} x 4{\deg} area centered at the Jiangmen Underground Neutrino Observatory (JUNO) experiment, currently under construction in the Guangdong Province (China). The a-priori modeling is based on the adoption of deep seismic sounding profiles, receiver functions, teleseismic P-wave velocity models and Moho depth maps, according to their own accuracy and spatial resolution. …

010504 meteorology & atmospheric sciencesGeoneutrinogeophysical uncertaintieInverse transform samplingFOS: Physical sciences01 natural sciencesBayesian methodUpper middle and lower crustStandard deviationNOSouth China BlockmiddlePhysics - GeophysicsMonte Carlo stochastic optimizationGOCE data gravimetric inversionGeophysical uncertaintiesGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Bayesian method; geophysical uncertainties; GOCE data gravimetric inversion; Monte Carlo stochastic optimization; South China Block; upper middle and lower crustImage resolution0105 earth and related environmental sciencesSubdivisionJiangmen Underground Neutrino Observatoryupper and middle and lower crustbusiness.industrySettore FIS/01 - Fisica SperimentaleCrustupperGeodesy[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph]Geophysics (physics.geo-ph)and lower crustDepth soundingGeophysics13. Climate actionSpace and Planetary SciencebusinessGeologyBayesian method geophysical uncertainties GOCE data gravimetric inversion Monte Carlo stochastic optimization South China Blockupper and middle and lower crust
researchProduct

Neutrino Physics with JUNO

2016

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

Particle physicsSterile neutrinoNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsGeoneutrinoreactor neutrino experimentPhysics::Instrumentation and DetectorsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciences7. Clean energy01 natural sciencesNOHigh Energy Physics - Experimentneutrino astronomyHigh Energy Physics - Experiment (hep-ex)neutrino physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino mass hierarchy reactor liquid scintillator010306 general physicsJiangmen Underground Neutrino Observatorymedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino physicInstrumentation and Detectors (physics.ins-det)Universereactor neutrino experimentslarge scintillator detectors; neutrino astronomy; neutrino physics; reactor neutrino experiments; Nuclear and High Energy PhysicsSupernovalarge scintillator detectors13. Climate actionPhysics::Space Physicslarge scintillator detectorHigh Energy Physics::ExperimentNeutrinoreactor neutrino experiments; large scintillator detectors; neutrino physics; neutrino astronomy
researchProduct

Temperature effect on RPC performance in the ARGO-YBJ experiment

2009

The ARGO-YBJ experiment has been taking data for nearly 2 years. In order to monitor continuously the performance of the Resistive Plate Chamber detectors and to study the daily temperature effects on the detector performance, a cosmic ray muon telescope was setup near the carpet detector array in the ARGO-YBJ laboratory. Based on the measurements performed using this telescope, it is found that, at the actual operating voltage of 7.2kV, the temperature effect on the RPC time resolution is about 0.04ns/degrees C and on the particle detection efficiency is about 0.03%/degrees C. Based on these figures we conclude that the environmental effects do not affect substantially the angular resoluti…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCosmic rayEfficiencytelescopelaw.inventionTelescopeOpticslawAngular resolutionOperating voltagetime resolutionInstrumentationArgoPhysicsMuonbusiness.industryDetectorSettore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsTime resolutionTime resolutionCosmic Ray TelescopeefficiencyRPCHigh Energy Physics::Experimentbusiness
researchProduct

Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability

2019

Abstract This paper describes the design, construction principles and operations of the distillation and stripping pilot plants tested at the Daya Bay Neutrino Laboratory, with the perspective to adapt these processes, system cleanliness and leak-tightness standards to the final full scale plants to be used for the purification of the liquid scintillator of the JUNO neutrino detector. The main goal of these plants is to remove radio impurities from the liquid scintillator while increasing its optical attenuation length. Purification of liquid scintillator will be performed with a system combining alumina oxide, distillation, water extraction and steam (or N 2 gas) stripping. Such a combined…

Large-scale experimentNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency; Nuclear and High Energy Physics; Instrumentationscintillation counter: liquidMixing (process engineering)Full scaleFOS: Physical sciencesRadiopurityfabricationScintillator01 natural sciences7. Clean energyStripping (fiber)law.inventionNOlaw0103 physical sciencesthorium: admixtureAttenuation length; LAB; Large-scale experiments; Light yield; Liquid scintillator; Nitrogen purging; Radiopurity; Scintillator transparency[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsProcess engineeringDistillationInstrumentationbackground: radioactivityNuclear and High Energy PhysicPhysicsLABJUNOLarge-scale experiments010308 nuclear & particles physicsbusiness.industryuranium: admixtureSettore FIS/01 - Fisica SperimentaleAttenuation lengthInstrumentation and Detectors (physics.ins-det)Attenuation lengthNitrogen purgingNeutrino detectorScintillator transparencyNeutrinobusinessaluminum: oxygenLight yield
researchProduct

Long-term monitoring of mrk 501 for its very high energy γ emission and a flare in 2011 october

2012

"As one of the brightest active blazars in both X-ray and very high energy γ -ray bands, Mrk 501, is very useful for" "physics associated with jets from active galactic nuclei. The ARGO-YBJ experiment has monitored Mrk 501 for γ - rays above 0.3 TeV since 2007 November. The largest flare since 2005 was observed from 2011 October and lasted until about 2012 April. In this paper, a detailed analysis of this event is reported. During the brightest γ -ray flaring episodes from 2011 October 17 to November 22, an excess of the event rate over 6σ is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the γ -ray flux above 1 TeV by a factor of 6.6 ± 2.2 from its steady…

Active galactic nucleusactive" ["galaxies]Astrophysics::High Energy Astrophysical PhenomenaFluxAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesSpectral linelaw.inventionlaw0103 physical sciencesBlazar010303 astronomy & astrophysicsPhysicsindividual (Markarian 501) – galaxies: active – gamma rays: general – radiation mechanisms: non-thermal [BL Lacertae objects]" "general" ["gamma rays]010308 nuclear & particles physicsBL Lacertae objects: individual (Markarian 501) – galaxies: active – gamma rays: general – radiation mechanisms: non-thermalSettore FIS/01 - Fisica SperimentaleAstronomy and AstrophysicsQuasarGalaxyindividual (Markarian 501)" ["BL Lacertae objects]13. Climate actionSpace and Planetary ScienceSpectral energy distributionFlare
researchProduct

OBSERVATION OF THE TeV GAMMA-RAY SOURCE MGRO J1908+06 WITH ARGO-YBJ

2012

The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysicsgeneral – pulsars: individual (MGRO J1908+06) [gamma rays]7. Clean energy01 natural sciencesPulsar wind nebulaLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicspulsarPhysics010308 nuclear & particles physicsgamma rays: general – pulsars: individual (MGRO J1908+06)Settore FIS/01 - Fisica SperimentaleGamma rayAstronomy and Astrophysics(MGRO J1908+06)Air showerCrab Nebula13. Climate actionSpace and Planetary Sciencegamma rayMilagroHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEnergy (signal processing)
researchProduct

Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment

2013

We report the observation of a very high energy \gamma-ray source, whose position is coincident with HESS J1841-055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x 10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab units, which is…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Range (particle radiation)PhotonDegree (graph theory)010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleGamma rayFluxFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesgamma raysWavelengthSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceCoincident0103 physical sciencesGamma Rays Argo-YBJ Extended Air Shower DetectorsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsgeneral [gamma rays]Energy (signal processing)
researchProduct

The ARGO-YBJ Experiment Progresses and Future Extension

2010

Gamma ray source detection above 30 TeV is an encouraging approach for finding galactic cosmic ray origins. All sky survey for gamma ray sources using wide field of view detector is essential for population accumulation for various types of sources above 100 GeV. To target the goals, the ARGO-YBJ experiment has been established. Significant progresses have been made in the experiment. A large air shower detector array in an area of 1 km2 is proposed to boost the sensitivity. Hybrid detections with multi-techniques will allow a good discrimination between different types of primary particles, including photons and protons, thus enable an energy spectrum measurement for individual species. F…

PhotonGamma ray source cosmic ray origin detector arraymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaPopulationDetector arrayFOS: Physical sciencesCosmic rayAstrophysicsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)detector arrayUltra-high-energy cosmic rayeducationMathematical Physicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicseducation.field_of_studyDetectorGamma ray sourceAstrophysics::Instrumentation and Methods for AstrophysicsGamma rayAstronomy and Astrophysicscosmic ray originCosmic ray originAir showerSpace and Planetary ScienceSkyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Search for gamma ray bursts with the ARGO-YBJ detector in scaler mode

2009

We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100 GeV in coincidence with the prompt emission detected by satellites using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R. China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate Chambers), and large field of view (about 2 sr, limited only by the atmospheric absorption), the ARGO-YBJ air shower detector is particularly suitable for the detection of unpredictable and short duration events such as GRBs. The search is carried out using the "single particle technique", i.e. counting all the …

Nuclear and High Energy PhysicsGamma ray burstAstrophysics::High Energy Astrophysical PhenomenaAir shower arrayAstrophysicsArgo-YbjSettore FIS/05 - Astronomia e AstrofisicaObservatoryGamma Rays ObservationsInstrumentationZenithArgoPhysicsRange (particle radiation)Apparati di sciameDetectorSettore FIS/01 - Fisica SperimentaleGamma rayGamma ray bursts Air shower arraysMode (statistics)Astrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsRedshiftAir showerSpace and Planetary ScienceGamma Ray Bursts Gamma Ray EmissionAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst
researchProduct

The ARGO-YBJ experiment in Tibet

2008

The setting up of the ARGO detector at the YangBaJing Cosmic Ray Laboratory (4300 m a.s.l., Tibet, P.R. China) has been completed during the last spring (2007). It consists of a central carpet made of 130 identical sub-units of 12 RPCs each (a "cluster"), covering a surface of about 5800 m2 with 93% active area, and a guard ring of 24 further clusters of the same type surrounding the central carpet with a lower sampling density. Signals are picked up by external electrodes of small size, thus allowing the sampling of EAS with high space-time granularity. Shower events are detected at a trigger rate of about 4 kHz. Events with a few particles detected by a single cluster are counted in scale…

PhysicsNuclear and High Energy PhysicsGamma ray burstSingle clusterTrigger rateDetectorgamma ray bursts gamma rays cosmic rays extended air showersAstronomySampling (statistics)Cosmic rayExtended air showers Cosmic rays Gamma ray sources Gamma ray burstsGamma ray sourcesGeodesyCosmic rayGuard ringExtended air showerSampling densityInstrumentationArgoNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Background radioactivity in the scaler mode technique of the Argo-YBJ detector

2011

""ARGO-YBJ is an extensive air shower detector located at the Yangbajing Cosmic Ray Laboratory (4300 ma.s.l., 606 g cm^−2 atmospheric depth, Tibet, China).. It is made by a single layer of Resistive Plate Chambers. (RPCs, total surface ~ 6700 m^2) grouped into 153 units. called “clusters”. The low energy threshold of the experiment is obtained using the ”scaler operation mode”, counting all the particles hitting the detector without reconstruction of the shower size and arrival direction. For each cluster the signals generated by these particles are put in coincidence in a narrow time window (150 ns) and read by four independent. scaler channels, giving the counting rates of channel. >= 1, …

PhysicsResistive touchscreenPhysics and Astronomy (miscellaneous)Atmospheric pressureSettore FIS/01 - Fisica SperimentaleDetectorScaler ModeAstronomy and AstrophysicsCosmic rayRadioactivity Array Detector Scaler ModeArray DetectorCoincidenceComputational physicsRadioactivityAir showerCoincidentArgo
researchProduct

Gamma ray sources observation with the ARGO-YBJ detector

2011

In this paper we report on the observations of TeV gamma ray sources performed by the air shower de- tector ARGO-YBJ. The objects studied in this work are the blazar Markarian 421 and the extended galactic source MGROJ1908+06, monitored during 2 years of operation. Mrk421 has been detected by ARGO-YBJ with a statisti- cal significance of 11 standard deviations. The observed TeV emission was highly variable, showing large enhance- ments of the flux during active periods. The study of the spectral behaviour during flares revealed a positive correla- tion of the hardness with the flux, as already reported in the past by the Whipple telescope, suggesting that this is a long term property of the…

PhysicsNuclear and High Energy PhysicsGamma AstronomyPhysics and Astronomy (miscellaneous)Astrophysics::High Energy Astrophysical PhenomenaDetectorGamma rayFluxAstronomyExtensive Air ShowerAstronomy and AstrophysicsAstrophysicsGamma-ray astronomyArray DetectorGamma-RayArgo-YbjGamma Astronomy Array DetectorCrab NebulaAir showerPulsarMilagroBlazarInstrumentationArgoNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct