0000000001217953

AUTHOR

B. Lubsandorzhiev

Possibilities for Underground Physics in the Pyh\"asalmi mine

The Pyh\"asalmi mine is uniquely suited to host new generation of large-scale underground experiments. It was chosen both by the LAGUNA-LBNO and by the LENA Collaboration as the preferred site for a giant neutrino observatory. Regrettably, none of these projects got funded. The termination of the underground excavations in the fall of 2019 marks an important milestone. To maintain the infrastructure in good condition a new sponsor must be found: either a large-scale scientific project or new commercial operation. The considered alternatives for the commercial used of the mine include a pumped-storage hydroelectricity plant and a high-security underground data-storage centre. Without a new s…

research product

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

research product

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

research product

Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

Physical review / D 101(3), 032006 (1-19) (2020). doi:10.1103/PhysRevD.101.032006

research product

Geiger mode APD’s for the underground cosmic ray experiment EMMA

research product

Measurement of θ13 in Double Chooz using neutron captures on hydrogen with novel background rejection techniques

The Double Chooz collaboration presents a measurement of the neutrino mixing angle θ[subscript 13] using reactor [bar over ν[subscript e]] observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050 m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respec…

research product

Underground multi-muon experiment EMMA

EMMA is a new experiment designed for cosmic-ray composition studies around the knee energy operating at the shallow depth underground in the Pyhäsalmi mine, Finland. The array has sufficient coverage and resolution to determine the multiplicity, the lateral density distribution and the arrival direction of high-energy muons on an event by event basis. Preliminary results on the muon multiplicity extracted using one detector station of the array are presented. peerReviewed

research product

The features of electronics structure of the multichannel scintillation module for the EMMA experiment

A brief description of the developed structural electric diagrams of 16-channel scintillation module for the underground EMMA experiment, the basic characteristics and parameters of the electrical diagrams of this module are presented. Multi-pixel photodiodes operating in a limited Geiger mode are used for photoreadout of the scintillator detectors in 16-channel scintillation module. The method of the automatic tuning of the photosensors gain based on the stabilization of an average counting rate of the scintillation detectors from gamma rays of a natural radioactive background is described. peerReviewed

research product