Response to 'Thyrocytes — not innocent bystanders in autoimmune disease'
Giordano et al. propose that thyrocytes play a crucial role in the regulation of the autoimmune response during GD. According to them, Fas is weakly expressed in GD thyrocytes, whereas FasL is responsible for a specific deletion of infiltrating TH1 cells and maintains a TH2 phenotype in the lymphocytic infiltrate.
Colorectal Cancer Stem Cells: From the Crypt to the Clinic
Since their first discovery, investigations of colorectal cancer stem cells (CSCs) have revealed some unexpected properties, including a high degree of heterogeneity and plasticity. By exploiting a combination of genetic, epigenetic, and microenvironmental factors, colorectal CSCs metastasize, resist chemotherapy, and continually adapt to a changing microenvironment, representing a formidable challenge to cancer eradication. Here, we review the current understanding of colorectal CSCs, including their origin, relationship to stem cells of the intestine, phenotypic characterization, and underlying regulatory mechanisms. We also discuss limitations to current preclinical models of colorectal …
CHK1 inhibitor sensitizes resistant colorectal cancer stem cells to nortopsentin
Summary Limited therapeutic options are available for advanced colorectal cancer (CRC). Herein, we report that exposure to a neo-synthetic bis(indolyl)thiazole alkaloid analog, nortopsentin 234 (NORA234), leads to an initial reduction of proliferative and clonogenic potential of CRC sphere cells (CR-CSphCs), followed by an adaptive response selecting the CR-CSphC-resistant compartment. Cells spared by the treatment with NORA234 express high levels of CD44v6, associated with a constitutive activation of Wnt pathway. In CR-CSphC-based organoids, NORA234 causes a genotoxic stress paralleled by G2-M cell cycle arrest and activation of CHK1, driving the DNA damage repair of CR-CSphCs, regardless…
Defective expression of CD95 (FAS/APO-1) molecule suggests apoptosis impairment of T and B cells in HLA-B8, DR3-positive individuals.
Activation-induced apoptosis is one of the primary control mechanisms for the negative selection of an immune response, leading to maintenance of immune homeostasis and selective T cell deletion. The interaction between the surface molecule Fas and its ligand (FasL) has been proposed as a primary mechanism initiating T cell apoptosis. The T cell receptor modulates the expression and function of these molecules. Defects in the Fas/FasL apoptosis pathway have been shown to result in autoimmune disease in humans and in murine models. Because subjects carrying the HLA-B8, DR3 haplotype show a number of immune dysfunctions, including membrano-proliferative glomerulonephritis, systemic lupus eryt…
Identification and expansion of human colon-cancer-initiating cells
Colon carcinoma is the second most common cause of death from cancer. The isolation and characterization of tumorigenic colon cancer cells may help to devise novel diagnostic and therapeutic procedures. Although there is increasing evidence that a rare population of undifferentiated cells is responsible for tumour formation and maintenance, this has not been explored for colorectal cancer. Here, we show that tumorigenic cells in colon cancer are included in the high-density CD133+ population, which accounts for about 2.5% of the tumour cells. Subcutaneous injection of colon cancer CD133+ cells readily reproduced the original tumour in immunodeficient mice, whereas CD133- cells did not form …
Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice.
BACKGROUND & AIMS: The limited clinical response observed in many patients with colorectal cancer may be related to the presence of chemoresistant colorectal can- cer stem cells (CRC-SCs). Bone morphogenetic protein 4 (BMP4) promotes the differentiation of normal colonic stem cells. We investigated whether BMP4 might be used to induce differentiation of CRC-SCs and for therapeutic purposes. METHODS: CRC-SCs were isolated from 25 tumor samples based on expression of CD133 or using a selection culture medium. BMP4 expression and activity on CRC-SCs were evaluated in vitro; progeny of the stem cells were evaluated by immunofluorescence, immuno- blot, and flow cytometry analyses. The potential …
CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis.
SummaryCancer stem cells drive tumor formation and metastasis, but how they acquire metastatic traits is not well understood. Here, we show that all colorectal cancer stem cells (CR-CSCs) express CD44v6, which is required for their migration and generation of metastatic tumors. CD44v6 expression is low in primary tumors but demarcated clonogenic CR-CSC populations. Cytokines hepatocyte growth factor (HGF), osteopontin (OPN), and stromal-derived factor 1α (SDF-1), secreted from tumor associated cells, increase CD44v6 expression in CR-CSCs by activating the Wnt/β-catenin pathway, which promotes migration and metastasis. CD44v6− progenitor cells do not give rise to metastatic lesions but, when…
T-cell activation in HLA-B8,DR3-positive individuals early antigen expression defect in vitro
The HLA-B8, DR3 haplotype is overrepresented in several autoimmune diseases, implying that genes predisposing to these disorders are linked to this haplotype. In the patients affected by these diseases, as well as in healthy HLA-B8, DR3 individuals, various dysfunctions reflecting an impairment of T-cell activation have been found. To better characterize T-cell impairment of HLA-B8, DR3-positive healthy individuals, we analyzed the surface expression of early (CD69) and late (CD71) activation phenotypes. MNC cultures were stimulated with PHA and used for T-cell phenotyping by flow cytometry analysis. The results showed that the percentage of CD69+ T cells was significantly decreased in MNC …
Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers
// Giulia Bon 1, * , Rossella Loria 1, * , Carla Azzurra Amoreo 2 , Alessandra Verdina 1 , Isabella Sperduti 2 , Arianna Mastrofrancesco 3 , Silvia Soddu 1 , Maria Grazia Diodoro 2 , Marcella Mottolese 2 , Matilde Todaro 4 , Giorgio Stassi 4 , Michele Milella 5 , Ruggero De Maria 6 , Rita Falcioni 1 1 Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy 2 Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, Italy 3 Physiopathology Laboratory of Skin, IRCCS San Gallicano Dermatological Institute, Rome, Italy 4 Surgical and Oncological Scien…
CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells.
ObjectiveCancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies.DesignTo discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein mic…
Epithelial-mesenchymal transition: a new target in anticancer drug discovery
The conversion of cells with an epithelial phenotype into cells with a mesenchymal phenotype, referred to as epithelial-mesenchymal transition, is a critical process for embryonic development that also occurs in adult life, particularly during tumour progression. Tumour cells undergoing epithelial-mesenchymal transition acquire the capacity to disarm the body's antitumour defences, resist apoptosis and anticancer drugs, disseminate throughout the organism, and act as a reservoir that replenishes and expands the tumour cell population. Epithelial-mesenchymal transition is therefore becoming a target of prime interest for anticancer therapy. Here, we discuss the screening and classification o…
Inhibition of DNA methylation sensitizes glioblastoma for tumor necrosis factor-related apoptosis-inducing ligand-mediated destruction.
AbstractLife expectancy of patients affected by glioblastoma multiforme is extremely low. The therapeutic use of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has been proposed to treat this disease based on its ability to kill glioma cell lines in vitro and in vivo. Here, we show that, differently from glioma cell lines, glioblastoma multiforme tumors were resistant to TRAIL stimulation because they expressed low levels of caspase-8 and high levels of the death receptor inhibitor PED/PEA-15. Inhibition of methyltransferases by decitabine resulted in considerable up-regulation of TRAIL receptor-1 and caspase-8, down-regulation of PED/PEA-15, inhibition of cell growth, and …
Tumorigenic and metastatic activity of human thyroid cancer stem cells
Abstract Thyroid carcinoma is the most common endocrine malignancy and the first cause of death among endocrine cancers. We show that the tumorigenic capacity in thyroid cancer is confined in a small subpopulation of stem-like cells with high aldehyde dehydrogenase (ALDHhigh) activity and unlimited replication potential. ALDHhigh cells can be expanded indefinitely in vitro as tumor spheres, which retain the tumorigenic potential upon delivery in immunocompromised mice. Orthotopic injection of minute numbers of thyroid cancer stem cells recapitulates the behavior of the parental tumor, including the aggressive metastatic features of undifferentiated thyroid carcinomas, which are sustained by…
Palbociclib plus endocrine therapy in HER2 negative, hormonal receptor-positive, advanced breast cancer: A real-world experience
Data from 423 human epidermal growth factor receptor 2-negative (HER2−), hormone receptor-positive (HR+) advanced breast cancer (aBC) patients treated with palbociclib and endocrine therapy (ET) were provided by 35 Italian cancer centers and analyzed for treatment outcomes. Overall, 158 patients were treated in first line and 265 in second/later lines. We observed 19 complete responses and 112 partial responses. The overall response rate (ORR) was 31% (95% confidence interval [CI], 26.6–35.4) and clinical benefit was 52.7% (95% CI, 48–57.5). ORR was negatively affected by prior exposure to everolimus/exemestane (p = 0.002) and favorably influenced by early line-treatment (p < 0.0001). At…
Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells.
AbstractAlthough CD95 and its ligand are expressed in thyroid cancer, the tumor cell mass does not seem to be affected by such expression. We have recently shown that thyroid carcinomas produce interleukin (IL)-4 and IL-10, which promote resistance to chemotherapy through the up-regulation of Bcl-xL. Here, we show that freshly purified thyroid cancer cells were completely refractory to CD95-induced apoptosis despite the consistent expression of Fas-associated death domain and caspase-8. The analysis of potential molecules able to prevent caspase-8 activation in thyroid cancer cells revealed a remarkable up-regulation of cellular FLIPL (cFLIPL) and PED/PEA-15, two antiapoptotic proteins whos…
Additional file 1 of Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study
Additional file 1.
The prognostic relevance of HER2-positivity gain in metastatic breast cancer in the ChangeHER trial
Breast cancer (BC) heterogeneity is composite in nature, with a wide variety of factors concurring to define several pathological entities, which differ by clinical presentation, pathologic features, therapy administered, and inherent outcomes1. Additional sources of breast cancer heterogeneity may raise during the disease course. In BC patients whose disease was initially diagnosed in the early stage and subsequently progressed with metastatic involvement of one single or multiple site/s, the molecular characteristics of metastatic lesions do not necessary mimic those of the disease initially diagnosed. A well-depicted molecular landscape is crucial for subtype definition, prognostic evalu…
Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme
Abstract Purpose: Cancer stem cells (CSC) are thought to represent the population of tumorigenic cells responsible for tumor development. The stem cell antigen CD133 identifies such a tumorigenic population in a subset of glioblastoma patients. We conducted a prospective study to explore the prognostic potential of CSC analysis in glioblastoma patients. Experimental Design: We investigated the relationship between the in vitro growth potential of glioblastoma CSCs and patient death or disease progression in tumors of 44 consecutive glioblastoma patients treated with complete or partial tumorectomy followed by radiotherapy combined with temozolomide treatment. Moreover, we evaluated by immun…
Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant
Abstract Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy-resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, includ…
Cancer stem cell definitions and terminology:the devil is in the details
The cancer stem cell (CSC) concept has important therapeutic implications, but its investigation has been hampered both by a lack of consistency in the terms used for these cells and by how they are defined. Evidence of their heterogeneous origins, frequencies and their genomic, as well as their phenotypic and functional, properties has added to the confusion and has fuelled new ideas and controversies. Participants in The Year 2011 Working Conference on CSCs met to review these issues and to propose a conceptual and practical framework for CSC terminology. More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is also recommended as key t…
CD95 DISC formation and internalizzation occur in lipid rafts of typeI and typeII cells
We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase-8. We found that CD95 was preferentially located in lipid rafts of type I cells, while it was present both in raft and non-raft plasma membrane sub-domains of type II cells. After stimulation, CD95 located in phospholipid-rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross-linking resulted in caspase-independent translocation of FADD/MORT1 and caspase-8 to the lipid rafts, which was prevented by a death domain-defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and s…
Cancer stem cell-based models of colorectal cancer reveal molecular determinants of therapy resistance
Abstract Colorectal cancer (CRC) therapy mainly relies on the use of conventional chemotherapeutic drugs combined, in a subset of patients, with epidermal growth factor receptor [EGFR]-targeting agents. Although CRC is considered a prototype of a cancer stem cell (CSC)-driven tumor, the effects of both conventional and targeted therapies on the CSC compartment are largely unknown. We have optimized a protocol for colorectal CSC isolation that allowed us to obtain CSC-enriched cultures from primary tumor specimens, with high efficiency. CSC isolation was followed by in vitro and in vivo validation, genetic characterization, and drug sensitivity analysis, thus generating panels of CSC lines w…
Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance
Abstract In the last decades, the role of the microenvironment in tumor progression and therapeutic outcome has gained increasing attention. Cancer-associated fibroblasts (CAFs) have emerged as key players among stromal cells, owing to their abundance in most solid tumors and their diverse tumor-restraining/promoting roles. The interplay between tumor cells and neighboring CAFs takes place by both paracrine signals (cytokines, exosomes and metabolites) or by the multifaceted functions of the surrounding extracellular matrix. Here, we dissect the most recent identified mechanisms underlying CAF-mediated control of tumor progression and therapy resistance, which include induction of the epith…
Dual Inhibition of Myc Transcription and PI3K Activity Effectively Targets Colorectal Cancer Stem Cells
Despite advances in the curative approach, the survival rate of advanced colorectal cancer (CRC) patients is still poor, which is likely due to the emergence of cancer cell clones resistant to the available therapeutic options. We have already shown that CD44v6-positive CRC stem cells (CR-CSCs) are refractory toward standard anti-tumor therapeutic agents due to the activation of the PI3K pathway together with high HER2 expression levels. Tumor microenvironmental cytokines confer resistance to CR-CSCs against HER2/PI3K targeting by enhancing activation of the MAPK pathway. Here, we show that the CSC compartment, spared by BRAF inhibitor-based targeted therapy, is associated with increased ex…
NF-κB protects Behçet's disease T cells against CD95-induced apoptosis up-regulating antiapoptotic proteins
Objective To determine whether prolongation of the inflammatory reaction in patients with Behcet's disease (BD) is related to apoptosis resistance and is associated with the up-regulation of antiapoptotic factors. Methods The percentage of cell death was evaluated by flow cytometry in peripheral blood mononuclear cells from 35 patients with BD and 30 healthy volunteers. The expression levels of antiapoptotic factors and NF-κB regulatory proteins were measured using Western blotting and immunohistochemical analyses. To down-regulate NF-κB nuclear translocation, BD T lymphocytes were exposed in vitro to thalidomide and subjected to transfection with NF-κB small interfering RNA. Results Althou…
PTEN status is a crucial determinant of the functional outcome of combined MEK and mTOR inhibition in cancer
AbstractCombined MAPK/PI3K pathway inhibition represents an attractive, albeit toxic, therapeutic strategy in oncology. Since PTEN lies at the intersection of these two pathways, we investigated whether PTEN status determines the functional response to combined pathway inhibition. PTEN (gene, mRNA, and protein) status was extensively characterized in a panel of cancer cell lines and combined MEK/mTOR inhibition displayed highly synergistic pharmacologic interactions almost exclusively in PTEN-loss models. Genetic manipulation of PTEN status confirmed a mechanistic role for PTEN in determining the functional outcome of combined pathway blockade. Proteomic analysis showed greater phosphoprote…
Impact of BMI on HER2+ metastatic breast cancer patients treated with pertuzumab and/or trastuzumab emtansine. Real-world evidence
Body mass index (BMI) is a main indicator of obesity and its association with breast cancer is well established. However, little is known in the metastatic setting, especially in HER2-positive patients. We assessed the influence of BMI on clinical outcomes of patients treated with pertuzumab and/or trastuzumab emtansine (T-DM1) for HER2+ metastatic breast cancer (mBC). BMI was addressed as a categorical variable, being classified on the basis of the following ranges, that is, 18.5-24.9, 25-29.9, and 30.0-34.9, namely, normal weight, overweight, and Class I obesity. The outcomes chosen were progression-free survival to first-line chemotherapy (PFS1) and overall survival (OS). Overall (N = 70…
A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology
Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating …
Response to 'TH1 and TH2 cytokine control of thyrocyte survival in thyroid autoimmunity'
Mirakian et al. question our recent results, which suggest that thyrocyte survival during thyroid autoimmunity depends on differential effects of TH1 and TH2 cytokines1. Thyrocyte destruction in autoimmune thyroiditis is a slow process that lasts several years. We hypothesized that in thyroid autoimmunity the balance between life and death in thyrocytes depends on the predominance over the time of TH2 and TH1 cytokines, whose action is not restricted to immune cells but involves direct modulation of key molecules responsible for survival or death of target cells1.
Autoimmune thyroid disease: new models of cell death in autoimmunity
Autoimmunity to thyroid antigens leads to two distinct pathogenic processes with opposing clinical outcomes: hypothyroidism in Hashimoto's thyroiditis and hyperthyroidism in Graves' disease. The high frequency of these diseases and easy accessibility of the thyroid gland has allowed the identification of key pathogenic mechanisms in organ-specific autoimmune diseases. In early investigations, antibody- and T-cell-mediated death mechanisms were proposed as being responsible for autoimmune thyrocyte depletion. Later, studies on apoptosis have provided new insights into autoimmune target destruction, indicating the involvement of death receptors and cytokine-regulated apoptotic pathways in the…
Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51
AbstractBreast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independen…
Potential involvement of fas and its ligand in the pathogenesis of Hashimoto's thyroiditis
The mechanisms responsible for thyrocyte destruction in Hashimoto's thyroiditis (HT) are poorly understood. Thyrocytes from HT glands, but not from nonautoimmune thyroids, expressed Fas. Interleukin-1β (IL-1β), abundantly produced in HT glands, induced Fas expression in normal thyrocytes, and cross-linking of Fas resulted in massive thyrocyte apoptosis. The ligand for Fas (FasL) was shown to be constitutively expressed both in normal and HT thyrocytes and was able to kill Fas-sensitive targets. Exposure to IL-1β induced thyrocyte apoptosis, which was prevented by antibodies that block Fas, suggesting that IL-1β-induced Fas expression serves as a limiting factor for thyrocyte destruction. Th…
Abstract B5: A BMP7 variant inhibits angiogenesis in vitro and in vivo in part by downregulating VEGFR2 and FGFR1 expression in endothelial cells.
Abstract Glioblastoma multiforme (GBM), the most aggressive glioma, requires active angiogenesis for growth and survival. Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Previously, we demonstrated the use of a BMP7 variant (BMP7v) to differentiate glioblastoma stem-like cells (GSLCs) and significantly reduce their tumorigenic potential (Tate and Pallini et al. 2012). Using an in vitro co-culture endothelial cord formation assay, a surrogate of angiogenesis, and its cognate in vivo model, we investigated the role of BMP7v in VEGF, basic FGF (bFGF), tumor-driven a…
MUC1 oncoprotein promotes refractoriness to chemotherapy in thyroid cancer cells.
Abstract Overexpression of MUC1 oncoprotein is frequently observed in cancer and contributes to confer resistance to genotoxic agents. Papillary, follicular, and anaplastic thyroid carcinomas are the three forms of thyroid epithelial cancer. Anaplastic tumors are less differentiated and extremely aggressive, characterized by a poor prognosis. Little is known about the role of MUC1 in thyroid cancer. We recently showed that autocrine production of interleukin (IL)-4 and IL-10 controls thyroid cancer cell survival, growth, and resistance to chemotherapy through activation of Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) and phosphatidylinositide 3′-OH ki…
Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study
AbstractBackgroundHER2-targeting agents have dramatically changed the therapeutic landscape of HER2+ advanced breast cancer (ABC). Within a short time frame, the rapid introduction of new therapeutics has led to the approval of pertuzumab combined with trastuzumab and a taxane in first-line, and trastuzumab emtansine (T-DM1) in second-line. Thereby, evidence of T-DM1 efficacy following trastuzumab/pertuzumab combination is limited, with data from some retrospective reports suggesting lower activity. The purpose of the present study is to investigate T-DM1 efficacy in pertuzumab-pretreated and pertuzumab naïve HER2 positive ABC patients. We also aimed to provide evidence on the exposure to d…
Suppressor of cytokine signaling 3 sensitizes anaplastic thyroid cancer to standard chemotherapy
We previously showed that cancer cells from papillary, follicular, and anaplastic thyroid carcinomas produce interleukin-4 and interleukin-10, which counteract the cytotoxic activity of conventional chemotherapy through the up-regulation of antiapoptotic molecules. Here, we identify Janus kinase/signal transducers and activators of transcription (STAT) and phosphatidyl inositol 3-kinase (PI3K)/AKT as the down-stream pathways through which these cytokines confer resistance to cell death in thyroid cancer. We found that the absence of suppressors of cytokine signaling (SOCS) molecules allows the propagation of the survival signaling. Exogenous expression of SOCS1, SOCS3, and SOCS5 in the high…
IL-4 protects tumor cells from anti-CD95 and chemotherapeutic agents via up-regulation of antiapoptotic proteins
Abstract We recently proposed that Th1 and Th2 cytokines exert opposite effects on the pathogenesis and clinical outcome of organ-specific autoimmunity by altering the expression of genes involved in target cell survival. Because a Th2 response against tumors is associated with poor prognosis, we investigated the ability of IL-4 to protect tumor cells from death receptor- and chemotherapy-induced apoptosis. We found that IL-4 treatment significantly reduced CD95 (Fas/APO-1)- and chemotherapeutic drug-induced apoptosis in prostate, breast, and bladder tumor cell lines. Analysis of antiapoptotic protein expression revealed that IL-4 stimulation resulted in up-regulation of cellular (c) FLIP/F…
Abstract 2484: Non-canonical Hedgehog/Gli1 signaling drives lung adenocarcinoma stem cells survival and its targeting inhibits CSC-derived tumors
Abstract Introduction: Lung Adenocarcinoma (AC) is the most frequent lung cancer histological subtype and is a leading cause of cancer-related death worldwide. Hedgehog/Gli (Hh/Gli) signaling pathway regulates lung development and its aberrant activation contributes to tumor pathogenesis and play a role in cancer stem cells (CSC) control. We investigated oncogenic Hh/Gli signaling in AC-CSC. Methods: human AC-CSC were derived from primary tumors. For in vitro studies AC-CSC were maintained in serum-free medium supplemented with EGF/bFGF. For in vivo experiments, immunocompromised mice were injected with AC-CSC. Gli1 inhibitor GANT61 was used both in vitro and in vivo (IP 40 mg/kg twice/we) …
Additional file 2 of Loss of HER2 and decreased T-DM1 efficacy in HER2 positive advanced breast cancer treated with dual HER2 blockade: the SePHER Study
Additional file 2.
PI3K-driven HER2 expression is a potential therapeutic target in colorectal cancer stem cells
ObjectiveCancer stem cells are responsible for tumour spreading and relapse. Human epidermal growth factor receptor 2 (HER2) expression is a negative prognostic factor in colorectal cancer (CRC) and a potential target in tumours carrying the gene amplification. Our aim was to define the expression of HER2 in colorectal cancer stem cells (CR-CSCs) and its possible role as therapeutic target in CRC resistant to anti- epidermal growth factor receptor (EGFR) therapy.DesignA collection of primary sphere cell cultures obtained from 60 CRC specimens was used to generate CR-CSC mouse avatars to preclinically validate therapeutic options. We also made use of the ChIP-seq analysis for transcriptional…
Defective T cell receptor/CD3 complex signaling in human type I diabetes
The autoimmune process leading to the destruction of pancreatic β-cells is mediated by T lymphocytes. Peripheral T cells from subjects with preclinical and clinical type I diabetes respond weakly in vitro to lectin stimulation. We, therefore, investigated in a group of newly diagnosed diabetic patients the presence of a defect in the signal transduction pathway of the T cell receptor (TcR)/CD3 complex. Following stimulation with anti-CD3-coupled beads, the proliferative response in diabetic T cells was significantly decreased in comparison with that from normal T cells. Interestingly, addition of either recombinant interleukin (IL)-2 or phorbol 12-myristate 13-acetate to the cell culture wa…
Erythropoietin activates cell survival pathways in breast cancer stem-like cells to protect them from chemotherapy
Abstract Recombinant erythropoietin (EPO) analogs [erythropoiesis-stimulating agents (ESA)] are clinically used to treat anemia in patients with cancer receiving chemotherapy. After clinical trials reporting increased adverse events and/or reduced survival in ESA-treated patients, concerns have been raised about the potential role of ESAs in promoting tumor progression, possibly through tumor cell stimulation. However, evidence is lacking on the ability of EPO to directly affect cancer stem–like cells, which are thought to be responsible for tumor progression and relapse. We found that breast cancer stem–like cells (BCSC) isolated from patient tumors express the EPO receptor and respond to …
Proliferation state and polo-like kinase1 dependence of tumorigenic colon cancer cells.
Abstract Tumor-initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor-initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies. Here, we show that tumorigenic colon cancer cells can be found in a rapidly proliferating state in vitro and in vivo, both in human tumors and mouse xenografts. Inhibitors of polo-like kinase1 (Plk1), a mitotic kinase essential fo…
CD95 death-inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells
We investigated the membrane localization of CD95 in type I and type II cells, which differ in their ability to recruit and activate caspase-8. We found that CD95 was preferentially located in lipid rafts of type I cells, while it was present both in raft and non-raft plasma membrane sub-domains of type II cells. After stimulation, CD95 located in phospholipid-rich plasma membrane was recruited to lipid rafts in both types of cells. Similarly, CD95 cross-linking resulted in caspase-independent translocation of FADD/MORT1 and caspase-8 to the lipid rafts, which was prevented by a death domain-defective receptor. CD95 internalization was then rapid in type I and delayed in type II cells and s…
A retrospective multicentric observational study of trastuzumab emtansine in HER2 positive metastatic breast cancer: A real-world experience
We addressed trastuzumab emtansine (T-DM1) efficacy in HER2+ metastatic breast cancer patients treated in real-world practice, and its activity in pertuzumab-pretreated patients. We conducted a retrospective, observational study involving 23 cancer centres, and 250 patients. Survival data were analyzed by Kaplan Meier curves and log rank test. Factors testing significant in univariate analysis were tested in multivariate models. Median follow-up was 15 months and median T-DM1 treatment-length 4 months. Response rate was 41.6%, clinical benefit 60.9%. Median progression-free and median overall survival were 6 and 20 months, respectively. Overall, no differences emerged by pertuzumab pretreat…
Prevention of chemotherapy-induced anemia and thrombocytopenia by constant administration of stem cell factor.
Abstract Purpose: Chemotherapy-induced apoptosis of immature hematopoietic cells is a major cause of anemia and thrombocytopenia in cancer patients. Although hematopoietic growth factors such as erythropoietin and colony-stimulating factors cannot prevent the occurrence of drug-induced myelosuppression, stem cell factor (SCF) has been previously shown to protect immature erythroid and megakaryocytic cells in vitro from drug-induced apoptosis. However, the effect of SCF in vivo as a single myeloprotective agent has never been elucidated. Experimental Design: The ability of SCF to prevent the occurrence of chemotherapy-induced anemia and thrombocytopenia was tested in a mouse model of cisplat…
Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells
Glioblastoma is a highly angiogenetic malignancy, the neoformed vessels of which are thought to arise by sprouting of pre-existing brain capillaries. The recent demonstration that a population of glioblastoma stem-like cells (GSCs) maintains glioblastomas indicates that the progeny of these cells may not be confined to the neural lineage. Normal neural stem cells are able to differentiate into functional endothelial cells. The connection between neural stem cells and the endothelial compartment seems to be critical in glioblastoma, where cancer stem cells closely interact with the vascular niche and promote angiogenesis through the release of vascular endothelial growth factor(VEGF) and str…
Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery.
Obesity is a strong risk factor for cancer progression, posing obesity-related cancer as one of the leading causes of death. Nevertheless, the molecular mechanisms that endow cancer cells with metastatic properties in patients affected by obesity remain unexplored. Here, we show that IL-6 and HGF, secreted by tumor neighboring visceral adipose stromal cells (V-ASCs), expand the metastatic colorectal (CR) cancer cell compartment (CD44v6 + ), which in turn secretes neurotrophins such as NGF and NT-3, and recruits adipose stem cells within tumor mass. Visceral adipose-derived factors promote vasculogenesis and the onset of metastatic dissemination by activation of STAT3, which inhibits miR-200…