0000000001268337

AUTHOR

Fabrizio Martino

showing 22 related works from this author

On multiplicities of cocharacters for algebras with superinvolution

2021

Abstract In this paper we deal with finitely generated superalgebras with superinvolution, satisfying a non-trivial identity, whose multiplicities of the cocharacters are bounded by a constant. Along the way, we prove that the codimension sequence of such algebras is polynomially bounded if and only if their colength sequence is bounded by a constant.

Pure mathematicsSequenceMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraSuperinvolution010102 general mathematicsCodimensionCocharacters; Colength; Multiplicities; SuperinvolutionCocharacters01 natural sciencesmultiplicitiecocharacterSettore MAT/02 - AlgebraIdentity (mathematics)SuperinvolutionBounded function0103 physical sciences010307 mathematical physicsFinitely-generated abelian groupColength0101 mathematicsConstant (mathematics)Mathematics
researchProduct

A note on cocharacter sequence of Jordan upper triangular matrix algebra

2016

Let UJn(F) be the Jordan algebra of n × n upper triangular matrices over a field F of characteristic zero. This paper is devoted to the study of polynomial identities satisfied by UJ2(F) and UJ3(F). In particular, the goal is twofold. On one hand, we complete the description of G-graded polynomial identities of UJ2(F), where G is a finite abelian group. On the other hand, we compute the Gelfand–Kirillov dimension of the relatively free algebra of UJ2(F) and we give a bound for the Gelfand–Kirillov dimension of the relatively free algebra of UJ3(F).

Algebra and Number TheoryJordan algebraQuaternion algebraMathematics::Rings and Algebras010102 general mathematicsZero (complex analysis)Triangular matrixgrowth of algebras010103 numerical & computational mathematics01 natural sciencesgraded Jordan algebraCombinatoricsAlgebraFiltered algebraSettore MAT/02 - AlgebraDifferential graded algebraFree algebraAlgebra representationGraded identitie0101 mathematicsMathematics
researchProduct

Specht property for some varieties of Jordan algebras of almost polynomial growth

2019

Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .

Pure mathematicsPolynomialAlgebra and Number TheoryJordan algebraMathematics::Commutative AlgebraMathematics::Rings and Algebras010102 general mathematicsPolynomial identity specht property Jordan algebra codimensionZero (complex analysis)Triangular matrixField (mathematics)01 natural sciences0103 physical sciences010307 mathematical physicsIdeal (ring theory)Isomorphism0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

Classifying G-graded algebras of exponent two

2019

Let F be a field of characteristic zero and let $$\mathcal{V}$$ be a variety of associative F-algebras graded by a finite abelian group G. If $$\mathcal{V}$$ satisfies an ordinary non-trivial identity, then the sequence $$c_n^G(\mathcal{V})$$ of G-codimensions is exponentially bounded. In [2, 3, 8], the authors captured such exponential growth by proving that the limit $$^G(\mathcal{V}) = {\rm{lim}}_{n \to \infty} \sqrt[n]{{c_n^G(\mathcal{V})}}$$ exists and it is an integer, called the G-exponent of $$\mathcal{V}$$ . The purpose of this paper is to characterize the varieties of G-graded algebras of exponent greater than 2. As a consequence, we find a characterization for the varieties with …

General Mathematics010102 general mathematicsZero (complex analysis)Field (mathematics)0102 computer and information sciencesGraded algebras Exponent GrowthCharacterization (mathematics)01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraInteger010201 computation theory & mathematicsBounded functionExponentPolynomial identity exponent codimension graded algebra0101 mathematicsVariety (universal algebra)Abelian groupMathematics
researchProduct

Polynomial growth and star-varieties

2016

Abstract Let V be a variety of associative algebras with involution over a field F of characteristic zero and let c n ⁎ ( V ) , n = 1 , 2 , … , be its ⁎-codimension sequence. Such a sequence is polynomially bounded if and only if V does not contain the commutative algebra F ⊕ F , endowed with the exchange involution, and M, a suitable 4-dimensional subalgebra of the algebra of 4 × 4 upper triangular matrices. Such algebras generate the only varieties of ⁎-algebras of almost polynomial growth, i.e., varieties of exponential growth such that any proper subvariety is polynomially bounded. In this paper we completely classify all subvarieties of the ⁎-varieties of almost polynomial growth by gi…

Involution (mathematics)Algebra and Number TheorySubvariety010102 general mathematicsSubalgebraStar-codimensionTriangular matrixStar-polynomial identitie010103 numerical & computational mathematicsGrowth01 natural sciencesCombinatoricsSettore MAT/02 - AlgebraExponential growthBounded function0101 mathematicsCommutative algebraAssociative propertyMathematics
researchProduct

Polynomial identities for the Jordan algebra of upper triangular matrices of order 2

2012

Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…

Pure mathematicsPolynomialAlgebra and Number TheoryJordan algebraTriangular matrixJordan polynomial identities graded upper triangularCyclic groupField (mathematics)CodimensionBasis (universal algebra)CombinatoricsSettore MAT/02 - AlgebraOrder (group theory)Mathematics
researchProduct

On central polynomials and codimension growth

2022

Let A be an associative algebra over a field of characteristic zero. A central polynomial is a polynomial of the free associative algebra that takes central values of A. In this survey, we present some recent results about the exponential growth of the central codimension sequence and the proper central codimension sequence in the setting of algebras with involution and algebras graded by a finite group.

Settore MAT/02 - AlgebraGeneral Mathematicscentral polynomialsexponentPolynomial identitycodimension growth
researchProduct

Growth of central polynomials of algebras with involution

2021

Let A be an associative algebra with involution ∗ over a field of characteristic zero. A central ∗-polynomial of A is a polynomial in non- commutative variables that takes central values in A. Here we prove the existence of two limits called the central ∗-exponent and the proper central ∗-exponent that give a measure of the growth of the central ∗-polynomials and proper central ∗-polynomials, respectively. Moreover, we compare them with the PI-∗-exponent of the algebra.

polynomial identity central polynomials exponent cxdimension growthPure mathematicsSettore MAT/02 - AlgebraExponentInvolution (philosophy)Mathematics
researchProduct

Ordinary and graded cocharacter of the Jordan algebra of 2x2 upper triangular matrices

2014

Abstract Let F be a field of characteristic zero and U J 2 ( F ) be the Jordan algebra of 2 × 2 upper triangular matrices over F . In this paper we give a complete description of the space of multilinear graded and ordinary identities in the language of Young diagrams through the representation theory of a Young subgroup of S n . For every Z 2 -grading of U J 2 ( F ) we compute the multiplicities in the graded cocharacter sequence and furthermore we compute the ordinary cocharacter.

Discrete mathematicsNumerical AnalysisSequenceMultilinear mapPure mathematicsAlgebra and Number TheoryJordan algebraZero (complex analysis)Triangular matrixField (mathematics)Space (mathematics)Representation theoryJordan algebras Polynomial identities Basis of identities Cocharacter Gradings Graded polynomial identitiesSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyMathematics
researchProduct

Classifying Algebras with Graded Involutions or Superinvolutions with Multiplicities of their Cocharacter Bounded by One

2020

Let A be superalgebra over a field of characteristic zero and let ∗ be either a graded involution or a superinvolution defined on A. In this paper we characterize the ∗-algebras whose ∗-cocharacter has multiplicities bounded by one, showing a set of ∗-polynomial identities satisfied by such algebras.

Involution (mathematics)Pure mathematicsGeneral Mathematics010102 general mathematics0211 other engineering and technologies021107 urban & regional planning02 engineering and technology01 natural sciencesSuperalgebraSettore MAT/02 - AlgebraSuperinvolutionPolynomial identity cocharacter super involution graded involutionBounded function0101 mathematicsMathematics
researchProduct

Differential Identities and Varieties of Almost Polynomial Growth

2022

Let V be an L-variety of associative L-algebras, i.e., algebras where a Lie algebra L acts on them by derivations, and let c(n)(L) (V), n >= 1, be its Lcodimension sequence. If V is generated by a finite-dimensional L-algebra, then such a sequence is polynomially bounded only if V does not contain UT2, the 2 x 2 upper triangular matrix algebra with trivial L-action, and UT2 epsilon where L acts on UT2 as the 1-dimensional Lie algebra spanned by the inner derivation epsilon induced by e11. In this paper we completely classify all the L-subvarieties of var(L)(UT2) and var(L)(UT2 epsilon) by giving a complete list of finite-dimensional L-algebras generating them.

General Mathematicspolynomial identity differential identity variety of algebras codimension growth
researchProduct

Varieties of algebras with pseudoinvolution and polynomial growth

2017

Let A be an associative algebra with pseudoinvolution (Formula presented.) over an algebraically closed field of characteristic zero and let (Formula presented.) be its sequence of (Formula presented.) -codimensions. We shall prove that such a sequence is polynomially bounded if and only if the variety generated by A does not contain five explicitly described algebras with pseudoinvolution. As a consequence, we shall classify the varieties of algebras with pseudoinvolution of almost polynomial growth, i.e. varieties of exponential growth such that any proper subvariety has polynomial growth and, along the way, we shall give also the classification of their subvarieties. Finally, we shall de…

16R50; 16W50; growth; Polynomial identity; Primary: 16R10; pseudoinvolution; Secondary: 16W10Linear function (calculus)PolynomialPure mathematicspseudoinvolutionAlgebra and Number TheorySubvariety16R50growth010102 general mathematicsPolynomial identity pseudo involution codimension growthZero (complex analysis)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesPrimary: 16R10Settore MAT/02 - AlgebraBounded functionAssociative algebra0101 mathematicsAlgebraically closed fieldVariety (universal algebra)16W50Secondary: 16W10MathematicsLinear and Multilinear Algebra
researchProduct

Varieties of special Jordan algebras of almost polynomial growth

2019

Abstract Let J be a special Jordan algebra and let c n ( J ) be its corresponding codimension sequence. The aim of this paper is to prove that in case J is finite dimensional, such a sequence is polynomially bounded if and only if the variety generated by J does not contain U J 2 , the special Jordan algebra of 2 × 2 upper triangular matrices. As an immediate consequence, we prove that U J 2 is the only finite dimensional special Jordan algebra that generates a variety of almost polynomial growth.

PolynomialSequenceCodimension (Mathematics)Algebra and Number TheoryJordan algebra010102 general mathematicsTriangular matrixCodimensão (Matemática)CodimensionPolynomial identity01 natural sciencesIdentidade polinomialCombinatoricsSettore MAT/02 - AlgebraPolynomial identity codimension sequence Jordan algebra almost polynomial growthIdentityBounded functionIdentidade0103 physical sciencesArtigo original010307 mathematical physics0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

Varieties of algebras with pseudoinvolution: Codimensions, cocharacters and colengths

2022

Abstract Let A be a finitely generated superalgebra with pseudoinvolution ⁎ over an algebraically closed field F of characteristic zero. In this paper we develop a theory of polynomial identities for this kind of algebras . In particular, we shall consider three sequences that can be attached to Id ⁎ ( A ) , the T 2 ⁎ -ideal of identities of A: the sequence of ⁎-codimensions c n ⁎ ( A ) , the sequence of ⁎-cocharacter χ 〈 n 〉 ⁎ ( A ) and the ⁎-colength sequence l n ⁎ ( A ) . Our purpose is threefold. First we shall prove that the ⁎-codimension sequence is eventually non-decreasing, i.e., c n ⁎ ( A ) ≤ c n + 1 ⁎ ( A ) , for n large enough. Secondly, we study superalgebras with pseudoinvoluti…

ColengthsPolynomialSequencePure mathematicsMultiplicitiesAlgebra and Number TheoryMathematics::Commutative AlgebraPseudoinvolutionsZero (complex analysis)Cocharacters; Colengths; Multiplicities; Polynomial identities; PseudoinvolutionsCocharactersSuperalgebraPolynomial identitiesSettore MAT/02 - AlgebraSection (category theory)Bounded functionIdeal (ring theory)Algebraically closed fieldMathematics
researchProduct

Polynomial identities for the Jordan algebra of a degenerate symmetric bilinear form

2013

Let J(n) be the Jordan algebra of a degenerate symmetric bilinear form. In the first section we classify all possible G-gradings on J(n) where G is any group, while in the second part we restrict our attention to a degenerate symmetric bilinear form of rank n - 1, where n is the dimension of the vector space V defining J(n). We prove that in this case the algebra J(n) is PI-equivalent to the Jordan algebra of a nondegenerate bilinear form.

Discrete mathematicsSymmetric algebraNumerical AnalysisPure mathematicsAlgebra and Number TheoryJordan algebraRank (linear algebra)Symmetric bilinear formPolynomial identities gradings Jordan algebraOrthogonal complementBilinear formSettore MAT/02 - AlgebraDiscrete Mathematics and CombinatoricsGeometry and TopologyAlgebra over a fieldMathematicsVector spaceLinear Algebra and its Applications
researchProduct

Superinvolutions on upper-triangular matrix algebras

2018

Let UTn(F) be the algebra of n×n upper-triangular matrices over an algebraically closed field F of characteristic zero. In [18], the authors described all abelian G-gradings on UTn(F) by showing that any G-grading on this algebra is an elementary grading. In this paper, we shall consider the algebra UTn(F) endowed with an elementary Z2-grading. In this way, it has a structure of superalgebra and our goal is to completely describe the superinvolutions which can be defined on it. To this end, we shall prove that the superinvolutions and the graded involutions (i.e., involutions preserving the grading) on UTn(F) are strictly related through the so-called superautomorphisms of this algebra. We …

PolynomialPure mathematicsAlgebra and Number Theory010102 general mathematicsPolynomial identity superinvolution upper-triangular matrices.Zero (complex analysis)Triangular matrixStructure (category theory)010103 numerical & computational mathematicsSingle class01 natural sciencesSuperalgebraSettore MAT/02 - Algebrapolynomial identity superinvolutions upper triangular matrices cocharacter0101 mathematicsAbelian groupAlgebraically closed fieldMathematics
researchProduct

Standard polynomials and matrices with superinvolutions

2016

Abstract Let M n ( F ) be the algebra of n × n matrices over a field F of characteristic zero. The superinvolutions ⁎ on M n ( F ) were classified by Racine in [12] . They are of two types, the transpose and the orthosymplectic superinvolution. This paper is devoted to the study of ⁎-polynomial identities satisfied by M n ( F ) . The goal is twofold. On one hand, we determine the minimal degree of a standard polynomial vanishing on suitable subsets of symmetric or skew-symmetric matrices for both types of superinvolutions. On the other, in case of M 2 ( F ) , we find generators of the ideal of ⁎-identities and we compute the corresponding sequences of cocharacters and codimensions.

Numerical AnalysisPolynomialAlgebra and Number TheoryDegree (graph theory)SuperinvolutionNumerical analysis010102 general mathematicsZero (complex analysis)Field (mathematics)010103 numerical & computational mathematicsPolynomial identity01 natural sciencesCombinatoricsMinimal degree; Polynomial identity; SuperinvolutionMinimal degreeTransposeDiscrete Mathematics and CombinatoricsIdeal (ring theory)Geometry and Topology0101 mathematicsNumerical AnalysiGeometry and topologyMathematics
researchProduct

Central polynomials of graded algebras: Capturing their exponential growth

2022

Let G be a finite abelian group and let A be an associative G-graded algebra over a field of characteristic zero. A central G-polynomial is a polynomial of the free associative G-graded algebra that takes central values for all graded substitutions of homogeneous elements of A. We prove the existence and the integrability of two limits called the central G-exponent and the proper central G-exponent that give a quantitative measure of the growth of the central G-polynomials and the proper central G-polynomials, respectively. Moreover, we compare them with the G-exponent of the algebra.

Settore MAT/02 - AlgebraAlgebra and Number TheoryCentral polynomialExponentCodimension growthPolynomial identity
researchProduct

Polynomial Identities of the Jordan algebra UJ2(F)

2012

Settore MAT/02 - AlgebraJordanalgebra UJ2(F)Polynomial
researchProduct

Prevalence of a metabolic syndrome among a pediatric casistic from the mountain community (Serre Calabre)

2006

.
researchProduct

CARDIOVASCULAR RISK FACTORS ANALYSIS OF PEDIATRIC MATABOLIC SYNDROME

2007

researchProduct

L'epicicloide: un viaggio tra la Storia e la Filosofia

2013

Laboratorio di matematica rivoluzione copernicana epicicloide unità didatticaSettore MAT/04 - Matematiche Complementari
researchProduct