0000000001277197

AUTHOR

Caren Hagner

showing 56 related works from this author

Search for the exotic Θ+ resonance in the NOMAD experiment

2006

12 pages, 16 figures.-- PACS nrs.: 13.15.+g; 13.60.Le; 13.87.Fh; 14.40.Ev.-- ISI Article Identifier: 000243973100007.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ex/0612063.-- et al.

QuarkParticle physicsPhysics and Astronomy (miscellaneous)Protonneutrino; nutrino oscillations; quarksElectromagnetic Calorimeter7. Clean energy01 natural sciencesParticle identificationHigh Energy Physics - ExperimentNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrino010306 general physicsEngineering (miscellaneous)Charged currentPhysicsNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaTransition Radiation DetectorPositive-strangenessBaryonPhotoproductionHigh Energy Physics::ExperimentNeutrinoParticle Physics - ExperimentCharged Current Interactions
researchProduct

The next-generation liquid-scintillator neutrino observatory LENA

2012

We propose the liquid-scintillator detector LENA (Low Energy Neutrino Astronomy) as a next-generation neutrino observatory on the scale of 50 kt. The outstanding successes of the Borexino and KamLAND experiments demonstrate the large potential of liquid-scintillator detectors in low-energy neutrino physics. LENA's physics objectives comprise the observation of astrophysical and terrestrial neutrino sources as well as the investigation of neutrino oscillations. In the GeV energy range, the search for proton decay and long-baseline neutrino oscillation experiments complement the low-energy program. Based on the considerable expertise present in European and international research groups, the …

Neutrino detectors; Liquid-scintillator detectors; Low-energy neutrinos; Proton decay; Longbaseline neutrino beamsParticle physicsPhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaLongbaseline neutrino beamsFOS: Physical sciencesLow-energy neutrinos7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNONuclear physicsLiquid-scintillator detectorsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrino detectorsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsBorexinoPhysics010308 nuclear & particles physicsFísicaAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Proton decaySolar neutrino problem[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Neutrino detectorddc:540Measurements of neutrino speedHigh Energy Physics::ExperimentNeutrinoNeutrino astronomyAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Topological track reconstruction in unsegmented, large-volume liquid scintillator detectors

2018

Unsegmented, large-volume liquid scintillator (LS) neutrino detectors have proven to be a key technology for low-energy neutrino physics. The efficient rejection of radionuclide background induced by cosmic muon interactions is of paramount importance for their success in high-precision MeV neutrino measurements. We present a novel technique to reconstruct GeV particle tracks in LS, whose main property, the resolution of topological features and changes in the differential energy loss $\mathrm{d}E/\mathrm{d}x$, allows for improved rejection strategies. Different to common track reconstruction approaches, our method does not rely on concrete track / topology hypotheses. Instead, based on a r…

Astroparticle physicsPhysicsPhysics - Instrumentation and DetectorsPhotonMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsDetectorFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)ScintillatorTopology01 natural sciencesNeutrino detector0103 physical sciencesHigh Energy Physics::ExperimentNeutrino010306 general physicsInstrumentationImage resolutionMathematical PhysicsJournal of Instrumentation
researchProduct

A more sensitive search for νμ→ντ oscillations in NOMAD

1999

With additional data and improved algorithms, we have enhanced the sensitivity of our appearance search for $\numunutau$ oscillations in the NOMAD detector in the CERN-SPS wide-band neutrino beam. The search uses kinematic criteria to identify $\nutau$ charged current interactions followed by decay of the $\tau^-$ to one of several decay modes. Our ``blind'' analyses of deep-inelastic scattering data taken in 1996 and 1997, combined with consistent reanalyses of previously reported 1995 data, yield no oscillation signal. For the two-family oscillation scenario, we present the contour outlining a 90\% C.L. confidence region in the $\sin^22\theta_{\mu \tau} - \Delta m^2$ plane. At large $\Del…

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsOscillationScatteringHigh Energy Physics::ExperimentSensitivity (control systems)NeutrinoNeutrino beamNeutrino oscillationCharged currentConfidence regionPhysics Letters B
researchProduct

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

2019

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

TechnologyPhysics - Instrumentation and Detectorswigglers and undulators)magnet: designPermanent magnet devicesPhysics::Instrumentation and Detectorsengineering01 natural sciences7. Clean energy09 Engineering030218 nuclear medicine & medical imagingradiation hardened magnetsSubatomär fysik0302 clinical medicineDipole magnetSubatomic PhysicsNeutrino detectorsDetectors and Experimental TechniquesInstruments & InstrumentationInstrumentationphysics.ins-detAcceleration cavities and magnets superconducting (high-temperature superconductor; radiation hardened magnets; normal-conducting; permanent magnet devices; wigglers and undulators)Mathematical PhysicsPhysics02 Physical SciencesLarge Hadron ColliderInstrumentation and Detectors (physics.ins-det)magnet: technologyNuclear & Particles Physicsbending magnetneutrino: detectorNeutrino detectornormal-conductingAcceleration cavities and magnets superconducting (high-temperature superconductorproposed experimentCERN LabRadiation hardened magnetsFOS: Physical sciencesNormal-conductingAccelerator Physics and InstrumentationNuclear physics03 medical and health sciences0103 physical sciencespermanent magnet devices[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Wigglers and undulators)normal-conducting magnetsScience & Technology010308 nuclear & particles physicsScatteringLarge detector systems for particle and astroparticle physicsAcceleratorfysik och instrumenteringLarge detector systems for particle physicsHigh temperature superconductors Neutrons Permanent magnets Ships Superconducting magnets Wigglers Astroparticle physics Comprehensive designs Massive structures Neutrino detectors Normal-conducting Radiation-hardened Ship experiments Technical challenges Particle detectorsVolume (thermodynamics)MagnetAcceleration cavities and magnets superconducting (high-temperature superconductor; Large detector systems for particle and astroparticle physics; Neutrino detectors; Normal-conducting; Permanent magnet devices; Radiation hardened magnets; Wigglers and undulators)High Energy Physics::Experimentneutrino detectors
researchProduct

Recent Borexino results and perspectives of the SOX measurement

2017

International audience; Borexino is a liquid scintillator detector sited underground in the Laboratori Nazionali del Gran Sasso (Italy). Its physics program, until the end of this year, is focussed on the study of solar neutrinos, in particular from the Beryllium, pp, pep and CNO fusion reactions. Knowing the reaction chains in the sun provides insights towards physics disciplines such as astrophysics (star physics, star formation, etc.), astroparticle and particle physics. Phase II started in 2011 and its aim is to improve the phase I results, in particular the measurements of the neutrino fluxes from the pep and CNO processes. By the end of this year, data taking from the sun will be over…

Sterile neutrinoneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoQC1-999scintillation counter: liquidanomaly[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesStandard ModelNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear fusion010306 general physicsNeutrino oscillationBorexinoPhysicsgallium010308 nuclear & particles physicsStar formationPhysicsstar: formationstabilityneutrino: sterilesensitivityberylliumGran SassoLSNDelectron: lifetimeHigh Energy Physics::ExperimentBorexinoneutrino: oscillationnuclear reactorNeutrinoneutrino: geophysicstalk: Kolymbari 2017/08/17experimental results
researchProduct

Search for νμ→νe oscillations in the NOMAD experiment

2003

We present the results of a search for vμ → v e oscillations in the NOMAD experiment at CERN. The experiment looked for the appearance of ve in a predominantly vμ wide-band neutrino beam at the CERN SPS. No evidence for oscillations was found. The 90% confidence limits obtained are Δm2 < 0.4 eV 2 for maximal mixing and sin2(2θ) < 1.4 × 10-3 for large Δm2. This result excludes the LSND allowed region of oscillation parameters with Δm2 ≳ 10 eV2. © 2003 Elsevier B.V. All rights reserved.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsOscillationNeutrino oscillationsNeutrino beam01 natural sciencesNuclear physics0103 physical sciencesEnergy spectrumNeutrino010306 general physicsNeutrino oscillationCharged current
researchProduct

SOX: search for short baseline neutrino oscillations with Borexino

2015

International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy regime through its accomplishments in the observation and study of the solar and geo neutrinos. It is then an ideal tool to perform a state of the art source-based experiment for testing the longstanding hypothesis of a fourth sterile neutrino with ~ eV(2) mass, as suggested by several anomalies accumulated over the past three decades in source, reactor, and accelerator-based experiments. The SOX project aims at successively deploying two intense radioactive sources, made of Cerium (antineutrino) and Chromium (neutrino), respectively, in a dedicated pit located beneath the det…

HistoryParticle physicsSterile neutrinochromium: nuclidePhysics::Instrumentation and DetectorsSolar neutrino[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyEducationNuclear physicsPhysics and Astronomy (all)0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationBorexinoactivity reportPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino: particle sourceSolar neutrino problemneutrino: sterilesensitivityComputer Science ApplicationsNeutrino detector13. Climate actioncerium: nuclideMeasurements of neutrino speedHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrinoantineutrino: particle source
researchProduct

Short distance neutrino oscillations with Borexino

2014

International audience; The Borexino detector has convincingly shown its outstanding performances in the low energy, sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection. These performances make it the ideal tool to accomplish a state-of-the-art experiment able to test unambiguously the long-standing issue of the existence of a sterile neutrino, as suggested by the several anomalous results accumulated over the past two decades, i.e. the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar neutrino experiments, and the recently hinted reactor anomaly. The SOX project will exploit two source…

Particle physicsSterile neutrinoneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Solar neutrinoscintillation counter: liquidanomalyneutrino: beam7. Clean energy01 natural sciencesNuclear physicsMiniBooNEPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationBorexinoenergy: lowPhysicsgallium010308 nuclear & particles physicsantineutrino: beamPhysicsDetectorHigh Energy Physics::Phenomenologytalk: Noto 2014/09/30neutrino: sterilecalibrationneutrino: nuclear reactorceriumLSNDradioactivityHigh Energy Physics::ExperimentBorexinoneutrino: familychromiumneutrino: oscillationNeutrinoAnomaly (physics)performanceexperimental results
researchProduct

A Search for Single Photon Events in Neutrino Interactions

2011

We present a search for neutrino induced events containing a single, exclusive photon using data from the NOMAD experiment at the CERN SPS where the average energy of the neutrino flux is ≃25 GeV. The search is motivated by an excess of electron-like events in the 200-475 MeV energy region as reported by the MiniBooNE experiment. In NOMAD, photons are identified via their conversion to e + e - in an active target embedded in a magnetic field. The background to the single photon signal is dominated by the asymmetric decay of neutral pions produced either in a coherent neutrino-nucleus interaction, or in a neutrino-nucleon neutral current deep inelastic scattering, or in an interaction occurr…

Nuclear and High Energy PhysicsParticle physicsPhotonFOS: Physical sciences01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsMiniBooNENeutral currentHigh Energy Physics - Experiment (hep-ex)PionHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesNeutrino[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coherent; Neutral current; Neutrino; Pion; Single photon; Nuclear and High Energy Physics010306 general physicsCharged currentPhysicsSingle photon; Neutrino; Neutral current; Coherent; PionNeutral current010308 nuclear & particles physicsFísicaDeep inelastic scatteringsingle photon; neutrino; neutral current; coherent; pionHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]PionHigh Energy Physics::ExperimentSingle photonNeutrinoCoherentEvent (particle physics)Particle Physics - Experiment
researchProduct

Production properties of $K*(892)\pm$ vector mesons and their spin alignment as measured in the NOMAD experiment

2006

First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results o…

Particle physicsPhysics and Astronomy (miscellaneous)MesonAnalytical chemistryFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear ExperimentEngineering (miscellaneous)Charged currentSpin-½PhysicsAnnihilationNeutral current010308 nuclear & particles physicsFísicaFull dataProduction (computer science)High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

First real–time detection of solar pp neutrinos by Borexino

2014

International audience; Solar neutrinos have been pivotal to the discovery of neutrino flavour oscillations and are a unique tool to probe the reactions that keep the Sun shine. Although most of solar neutrino components have been directly measured, the neutrinos emitted by the keystone pp reaction, in which two protons fuse to make a deuteron, have so far eluded direct detection. The Borexino experiment, an ultra-pure liquid scintillator detector running at the Laboratori Nazionali del Gran Sasso in Italy, has now filled the gap, providing the first direct real time measurement of pp neutrinos and of the solar neutrino luminosity.

deuteronParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsQC1-999Solar neutrinoAstrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidgap7. Clean energy01 natural sciencesNuclear physicsPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530flavor: oscillation010306 general physicsNuclear ExperimentBorexinoPhysicsICARUSp p: fusion010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologytalk: Noto 2014/09/30Solar neutrino problemGran SassoNeutrino detectorneutrino: flavorMeasurements of neutrino speedCOUNTING TEST FACILITYHigh Energy Physics::Experimentdirect detectionBorexinoneutrino: oscillationNeutrino astronomyNeutrinoexperimental resultsneutrino: luminosity
researchProduct

A test of electric charge conservation with Borexino

2015

Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio-purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single mono-energetic photon was obtained. This new bound, tau &gt; 6.6 10**28 yr at 90 % C.L., is two orders of magnitude better than the previous limit.

Particle physicsPhysics - Instrumentation and DetectorsOrders of magnitude (temperature)Physics::Instrumentation and DetectorsGeneral Physics and AstronomyFOS: Physical sciencesElectronScintillatorElectric chargeHigh Energy Physics - ExperimentNuclear physicsPhysics and Astronomy (all)High Energy Physics - Experiment (hep-ex)ddc:550Nuclear ExperimentBorexinoComputingMilieux_MISCELLANEOUSPhysics[PHYS]Physics [physics]Liquid scintillation countingDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)High Energy Physics::ExperimentNeutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Precision measurement of scaled momentum, charge multiplicity, and thrust in νμN and interactions

1999

By focusing on the notion of electronic document, we differentiate two evolutions which are useful to distinct titles: on the one hand are the documents, which have value of reference. Its administrator will take care to preserve its integrity and its context of production which is strongly significant. On the other hand are resources, evolutionary elements by nature, which the user must be able to appropriate and who must thus be placed at the disposal so that the production is erased, to focus on a logic of exploitation and service.

PhysicsNuclear and High Energy PhysicsParticle physicsOverlineCoherence effectElectronic documentThrustMultiplicity (chemistry)Charged currentPhysics Letters B
researchProduct

Calibration strategy of the JUNO experiment

2021

We present the calibration strategy for the 20 kton liquid scintillator central detector of the Jiangmen Underground Neutrino Observatory (JUNO). By utilizing a comprehensive multiple-source and multiple-positional calibration program, in combination with a novel dual calorimetry technique exploiting two independent photosensors and readout systems, we demonstrate that the JUNO central detector can achieve a better than 1% energy linearity and a 3% effective energy resolution, required by the neutrino mass ordering determination. [Figure not available: see fulltext.]

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsmeasurement methodsscintillation counter: liquidenergy resolutionFOS: Physical sciencesPhotodetectorScintillator53001 natural sciencesNOHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)hal-03022811PE2_2Optics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Calibrationlcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsAstrophysiqueJiangmen Underground Neutrino ObservatoryPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industrySettore FIS/01 - Fisica SperimentaleDetectorAstrophysics::Instrumentation and Methods for AstrophysicsLinearityInstrumentation and Detectors (physics.ins-det)calibrationNeutrino Detectors and Telescopes (experiments)lcsh:QC770-798High Energy Physics::ExperimentNeutrinobusinessEnergy (signal processing)Journal of High Energy Physics
researchProduct

A study of strange particle production in nu(mu) charged current interactions in the NOMAD experiment

2001

A study of strange particle production in $\nu_\mu$ charged current interactions has been performed using the data from the NOMAD experiment. Yields of neutral strange particles ($K^0_s, \Lambda, \bar{\Lambda}$) have been measured. Mean multiplicities are reported as a function of the event kinematic variables $E_\nu$, $W^2$ and $Q^2$ as well as of the variables describing particle behaviour within a hadronic jet: $x_F$, $z$ and $p_T^2$. Decays of resonances and heavy hyperons with identified $K^0_s$ and $\Lambda$ in the final state have been analyzed. Clear signals corresponding to $\rm {K^\star}^\pm$ $\rm {\Sigma^\star}^\pm$, $\rm \Xi^-$ and $\rm \Sigma^0$ have been observed. A study of s…

PhysicsNuclear and High Energy PhysicsStrange quarkParticle physics010308 nuclear & particles physicsStar (game theory)HadronHyperonFísicaLambda01 natural sciencesNuclear physics0103 physical sciencesneutrino interactions; strange particle productionProduction (computer science)High Energy Physics::ExperimentNeutrino010306 general physicsNuclear ExperimentCharged currentParticle Physics - Experiment
researchProduct

Search for low-energy neutrinos from astrophysical sources with Borexino

2019

We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($\bar{\nu}_e$) are detected in an organic liquid scintillator through the inverse $\beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $\bar{\nu}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $\bar{\nu}_e$ in the solar ne…

antineutrinosPhysics - Instrumentation and Detectorssolar flaresmagnetic field: highneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidelastic scatteringantineutrino/e: particle identification01 natural sciences7. Clean energyneutrino: fluxlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: supernova26.65.+t010303 astronomy & astrophysicsBorexinoElastic scatteringPhysicsSolar flareSupernova Relic Neutrinosneutrino: energy spectrumS067EB8neutrinosInstrumentation and Detectors (physics.ins-det)neutrino: magnetic momentDiffuse Supernova Neutrino Background3. Good healthSupernovaHomestakeddc:540neutrino: flavorAntineutrinoBorexinoNeutrino97.60.BwHomestake experimentFlareantineutrino/e: fluxAntineutrinos13.15.+G; 26.65.+T; 29.40.Mc; 97.60.Bw; Antineutrinos; Diffuse supernova neutrino background; Neutrinos; Solar flares; Supernova relic neutrinosAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSupernova relic neutrinosupernova relic neutrinosNONuclear physics13.15.+gPE2_2Antineutrinos; Neutrinos; Diffuse supernova neutrino background; Supernova relic neutrinos; Solar flares0103 physical sciencesNeutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinosdiffuse supernova neutrino background010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and Astrophysicsneutrino: particle source29.40.McGran SassoSolar flareSolar Flares13. Climate actionspectralHigh Energy Physics::Experimentexperimental results
researchProduct

The $^{144}$Ce source for SOX

2015

International audience; The SOX (Short distance neutrino Oscillations with BoreXino) project aims at testing the light sterile neutrino hypothesis. To do so, two artificials sources of antineutrinos and neutrinos respectively will be consecutively deployed at the Laboratori Nazionali del Gran Sasso (LNGS) in close vicinity to Borexino, a large liquid scintillator detector. This document reports on the source production and transportation. The source should exhibit a long lifetime and a high decay energy, a requirement fullfilled by the (144)Ce-(144)Pr pair at secular equilibrium. It will be produced at FSUE “Mayak” PA using spent nuclear fuel. It will then be shielded and packed according t…

HistorySterile neutrinoParticle physicsenergy: decay[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Scintillator01 natural sciences7. Clean energyEducationNuclear physicsPhysics and Astronomy (all)0103 physical sciencesddc:530010306 general physicsNeutrino oscillationparticle sourceBorexinoPhysicslifetimenucleusSecular equilibriumneutrino: sterileantineutrinosensitivitySpent nuclear fuelComputer Science ApplicationsGran SassoceriumDecay energyradioactivityBorexinoneutrino: oscillationproductionNeutrino
researchProduct

Test of the electric charge conservation law with Borexino detector

2015

International audience; The new limit on the electron lifetime is obtained from data of the Borexino experiment. The expected signal from the e → γν decay mode is a 256 keV photon detected in liquid scintillator. Because of the extremely low radioactive background level in the Borexino detector it was possible to improve the previous measurement by two orders of magnitude.

GRAN SASSOelectron --> photon neutrinoHistoryPhysics::Instrumentation and Detectorsscintillation counter: liquidElectronScintillator01 natural sciencesParticle detectorPhysics::GeophysicsEducationNuclear physicsSCINTILLATORPhysics and Astronomy (all)background: low0103 physical sciencescharge: conservation law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010303 astronomy & astrophysicsBorexinolifetimePhysicsCharge conservationSTABILITY010308 nuclear & particles physicsDetectorEXPERIMENTAL LIMITSComputer Science ApplicationsNeutrino detectorelectron: lifetimeBorexinoNeutrinoDECAYJournal of Physics: Conference Series
researchProduct

Seasonal Modulation of the $^7$Be Solar Neutrino Rate in Borexino

2017

We detected the seasonal modulation of the $^7$Be neutrino interaction rate with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. The period, amplitude, and phase of the observed time evolution of the signal are consistent with its solar origin, and the absence of an annual modulation is rejected at 99.99\% C.L. The data are analyzed using three methods: the sinusoidal fit, the Lomb-Scargle and the Empirical Mode Decomposition techniques, which all yield results in excellent agreement.

liquid scintillators detectorsPhysics - Instrumentation and Detectorsexperimental methodsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinolow background detectorsSolar neutrinos01 natural sciencesflux: time dependenceneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Liquid scintillators detectors; Low background detectors; Neutrino oscillations; Solar neutrinos; Astronomy and Astrophysics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Borexinoneutrino: interactionMSW effectPhysicsNeutrino oscillationsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)neutrino electron: elastic scatteringmodulationAmplitudeModulationsolar neutrinosBorexinoNeutrinoLiquid scintillators detectorFLUXLow background detectordata analysis methodNeutrino oscillationFOS: Physical sciencesSolar neutrinoNuclear physicsTIME-SERIES ANALYSIS[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]Low background detectorsLiquid scintillators detectorsSEARCH0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]SPACED DATA010306 general physicsNeutrino oscillationbackground: radioactivityneutrino oscillations010308 nuclear & particles physicsAstronomy and AstrophysicsEMPIRICAL MODE DECOMPOSITIONberylliumGran SassoHigh Energy Physics::Experimentneutrino: oscillationEvent (particle physics)experimental results
researchProduct

CNO and pep solar neutrino measurements and perspectives in Borexino

2015

International audience; The detection of neutrinos emitted in the CNO reactions in the Sun is one of the ambitious goals of Borexino Phase-II. A measurement of CNO neutrinos would be a milestone in astrophysics, and would allow to solve serious issues in current solar models. A precise measurement of the rate of neutrinos from the pep reaction would allow to investigate neutrino oscillations in the MSW transition region. The pep and CNO solar neutrino physics, the measurement in Borexino Phase-I and the perspectives for the new phase are reviewed in this proceeding.

model: solarHistoryneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomena7. Clean energy01 natural sciencesEducationNuclear physicsPhysics and Astronomy (all)talk: Moscow 2015/10/050103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astrophysics::Solar and Stellar Astrophysicsddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationBorexinoMSW effectPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemComputer Science ApplicationsMassless particleNeutrino detector13. Climate actionHigh Energy Physics::ExperimentBorexinoneutrino: oscillationNeutrinoLeptonexperimental results
researchProduct

Overview and accomplishments of the Borexino experiment

2015

International audience; The Borexino experiment is running at the Laboratori del Gran Sasso in Italy since 2007. Its technical distinctive feature is the unprecedented ultralow background of the inner scintillating core, which is the basis of the outstanding achievements accumulated by the experiment. In this talk, after recalling the main features of the detector, the impressive solar data gathered so far by the experiment will be summarized, with special emphasis to the most recent and prominent result concerning the detection of the fundamental pp solar neutrino flux, which is the direct probe of the engine mechanism powering our star. Such a milestone measurement puts Borexino in the un…

Historyneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoreview[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesneutrino: fluxEducationNuclear physicsPhysics and Astronomy (all)energy: solarstar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysicsddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsBorexinoPhysicsSolar energetic particlesbusiness.industrybackgroundAstronomyoscillationSolar energyComputer Science ApplicationsGran SassoMassless particleNEUTRINOSNeutrino detectorPhysics::Space PhysicsBorexinoNeutrinobusinessLepton
researchProduct

Geo-neutrino results with Borexino

2015

International audience; Borexino is a liquid scintillator detector primary designed to observe solar neutrinos. Due to its low background level as well as its position in a nuclear free country, Italy, Borexino is also sensitive to geo-neutrinos. Borexino is leading this interdisciplinary field of neutrino geoscience by studying electron antineutrinos which are emitted from the decay of radioactive isotopes present in the crust and the mantle of the Earth. With 2056 days of data taken between December 2007 and March 2015, Borexino observed 77 antineutrino candidates. If we assume a chondritic Th/U mass ratio of 3.9, the number of geo-neutrino events is found to be 23.7(+6.5) (-5.7)(stat) (+…

History010504 meteorology & atmospheric sciencesSolar neutrinoscintillation counter: liquidchemistry.chemical_elementScintillator010502 geochemistry & geophysics7. Clean energy01 natural sciencesthoriumEducationuraniumNuclear physicsPhysics and Astronomy (all)background: low[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Borexino0105 earth and related environmental sciencesPhysicsRadionuclideRadiogenic nuclideThoriumMass rationuclide: mass ratioComputer Science Applicationschemistry13. Climate actionradioactivityBorexinoGEOPHYSICSneutrino: geophysicsNeutrinoexperimental resultsJournal of Physics: Conference Series
researchProduct

CeSOX: An experimental test of the sterile neutrino hypothesis with Borexino

2017

International audience; The third phase of the Borexino experiment that’s referred to as SOX is devoted to test the hypothesis of the existence of one (or more) sterile neutrinos at a short baseline (~5–10m). The experimental measurement will be made with artificial sources namely with a 144Ce–144Pr antineutrino source at the first stage (CeSOX) and possibly with a 51Cr neutrino source at the second one. The fixed 144Ce–144Pr sample will be placed beneath the detector in a special pit and the initial activity will be about 100 – 150 kCi. The start of data taking is scheduled for April 2018. The article gives a short description of the preparation for the first stage and shows the expected s…

Physicsneutrino: sterile: search forHistorySterile neutrinoParticle physics010308 nuclear & particles physicsInitial activitysensitivity01 natural sciencesComputer Science ApplicationsEducationPHYSICSPhysics and Astronomy (all)cesium0103 physical sciencesOSCILLATIONS[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexinoproposed experimentNeutrino010306 general physicsantineutrino: particle sourceBorexinotalk: Moscow 2017/10/02
researchProduct

Updated Results from the $\nu_{\tau}$ Appearance Search in NOMAD

2000

Updated results from the appearance searches for $\numunutau$ and $\nuenutau$ oscillations in the full NOMAD data sample are reported. The increased data and the use of more refined kinematic schemes for the $\nutau$ CC selection allow a significant improvement of the overall sensitivity. The ``blind analysis" of both the deep-inelastic and the low multiplicity samples yields no evidence for an oscillation signal. In the two-family oscillation scenario, this sets a 90\% C.L. region in the $\sin^22\theta_{\mu\tau} - \Delta m^2$ plane which includes $\sin^22\theta_{\mu\tau}\ <\ 4.4\times10^{-4}$ at large $\Delta m^2$ and $\Delta m^2 < 0.8$ eV$^2$/$c^4$ at $\sin^22\theta_{\mu \tau}=1$. The cor…

PhysicsNuclear and High Energy PhysicsParticle physicsOscillationFísicaMultiplicity (mathematics)Sensitivity (control systems)Neutrino oscillationCharged currentParticle Physics - Experiment
researchProduct

Recent results from Borexino and the first real time measure of solar pp neutrinos

2014

International audience; The Borexino detector was built starting from 1996 in the underground hall C of Gran Sasso National Laboratory (LNGS) in Italy under about 1400 m of rock (3800 m.w.e) and it is mostly aimed to the study in real-time of the low-energy solar neutrinos.Since the beginning of data taking, in May 2007, the unprecedented detector radio-purity made the performances of the detector unique: a milestone has been very recently achieved with the measurement of solar pp neutrino flux, providing the first direct observation in real time of the key fusion reaction powering the Sun.In this contribution the most important Borexino achievements to the fields of solar, geo-neutrino and…

geo-neutrinosNuclear and High Energy PhysicsParticle physicsNeutrino oscillationneutrino: solarPhysics::Instrumentation and DetectorsGeo-neutrinos; Neutrino oscillations; Solar neutrinos; Nuclear and High Energy PhysicsSolar neutrinotalk: Valencia 2014/07/02Solar neutrinosSolar neutrino01 natural sciences7. Clean energyPhysics::Geophysics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530010306 general physicsNeutrino oscillationBorexinoPhysicsneutrino oscillations010308 nuclear & particles physicsNeutrino oscillationsSolar neutrino problemGran SassoNeutrino detectorGeo-neutrinosolar neutrinosMeasurements of neutrino speedBorexinoHigh Energy Physics::Experimentneutrino: oscillationneutrino: geophysicsNeutrino astronomyNeutrinoexperimental resultsGeo-neutrinosNuclear and Particle Physics Proceedings
researchProduct

Recent Borexino results and prospects for the near future

2015

The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase…

Sterile neutrinoPhysics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoQC1-999Astrophysics::High Energy Astrophysical Phenomenascintillation counter: liquidFOS: Physical sciencesScintillator53001 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)Low energy[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physics[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]BorexinoPhysics010308 nuclear & particles physicsneutrino: energy: lowgeophysicsbackgroundPhysicsDetectorneutrino: flux: measuredHigh Energy Physics::PhenomenologyInstrumentation and Detectors (physics.ins-det)neutrino: particle sourceneutrino: sterileantineutrinoGran SassoNEUTRINOS13. Climate actionBorexinoHigh Energy Physics::ExperimentNeutrinoNational laboratory
researchProduct

Limit on νe→ντ oscillations from the NOMAD experiment

2000

Abstract In the context of a two-flavour approximation we reinterpret the published NOMAD limit on ν μ → ν τ oscillations in terms of ν e → ν τ oscillations. At 90% C.L. we obtain sin 2 2θ eτ 5.2×10 −2 for large Δm 2 , while for sin 2 2 θ eτ =1 the confidence region includes Δm 2 2 / c 4 .

Nuclear physicsPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physics0103 physical sciencesContext (language use)Limit (mathematics)Neutrino beam010306 general physicsNeutrino oscillation01 natural sciencesCharged currentPhysics Letters B
researchProduct

New results on a search for a 33.9 MeV/c2 neutral particle from π+ decay in the NOMAD experiment

2002

We report on a direct search in NOMAD for a new 33.9 MeV/c^2 neutral particle (X) produced in pion decay in flight, pi-->mu_X followed by the decay X -->nu e^+e^-. Both decays are postulated to occur to explain the time anomaly observed by the KARMEN experiment. From the analysis of the data collected during the 1996?1998 runs with 4.1×10^19 protons on target, a single candidate event consistent with background expectations was found. The search is sensitive to a pion branching ratio BR(pi-->muX >3.7×10^-15, significantly smaller than previous experimental limits.

PhysicsNuclear and High Energy PhysicsParticle physicsNeutrino decay; Neutrino mixing; Nuclear and High Energy PhysicsBranching fractionNeutrino mixing; Neutrino decayNuclear physicsPionPiDirect searchNeutrino mixingAnomaly (physics)Neutral particleEvent (particle physics)Neutrino decayKARMENPhysics Letters B
researchProduct

3D topological reconstruction in liquid scintillator detectors

2019

PhysicsOpticsbusiness.industryDetectorScintillatorbusinessSolar Neutrinos
researchProduct

Radioactivity control strategy for the JUNO detector

2021

JUNO is a massive liquid scintillator detector with a primary scientific goal of determining the neutrino mass ordering by studying the oscillated anti-neutrino flux coming from two nuclear power plants at 53 km distance. The expected signal anti-neutrino interaction rate is only 60 counts per day, therefore a careful control of the background sources due to radioactivity is critical. In particular, natural radioactivity present in all materials and in the environment represents a serious issue that could impair the sensitivity of the experiment if appropriate countermeasures were not foreseen. In this paper we discuss the background reduction strategies undertaken by the JUNO collaboration…

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsNuclear engineeringMonte Carlo methodControl (management)measurement methodsFOS: Physical sciencesQC770-798Scintillator7. Clean energy01 natural sciencesNOPE2_2Nuclear and particle physics. Atomic energy. Radioactivity0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Sensitivity (control systems)010306 general physicsPhysicsJUNOliquid [scintillation counter]010308 nuclear & particles physicsbusiness.industryDetectorSettore FIS/01 - Fisica Sperimentaleradioactivity [background]suppression [background]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]Nuclear powerthreshold [energy]sensitivityNeutrino Detectors and Telescopes (experiments)GEANTNeutrinobusinessEnergy (signal processing)
researchProduct

Measurement of Solar pp-neutrino flux with Borexino: results and implications

2015

International audience; Measurement of the Solar pp-neutrino flux completed the measurement of Solar neutrino fluxes from the pp-chain of reactions in Borexino experiment. The result is in agreement with the prediction of the Standard Solar Model and the MSW/LMA oscillation scenario. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 10(5) years time scale, and sets a strong limit on the power production by the unknown energy sources in the Sun.

model: solarHistoryneutrino: solarSolar neutrinoAstrophysics::High Energy Astrophysical Phenomenaluminosity: solarSolar luminosity[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyneutrino: fluxEducationLuminosityNuclear physicsPhysics and Astronomy (all)SEARCH0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astrophysics::Solar and Stellar Astrophysicsddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsDETECTORBorexinoMSW effectPhysicsStandard solar modelSolar energetic particles010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyphotonAstronomySolar neutrino problemstabilityoscillationComputer Science Applicationsp p13. Climate actionPhysics::Space PhysicsBorexinoAstrophysics::Earth and Planetary AstrophysicsNeutrinoexperimental results
researchProduct

Borexino’s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts

2017

International audience; A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos ( ν¯e ) that inverse beta decay on protons with energies from 1.8  MeV to 15  MeV and set the best limit on the neutrino fluence from GRBs below 8  MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino f…

antineutrinoselectronAntineutrinosneutrino: solarPhysics::Instrumentation and Detectorsdata acquisitionSolar neutrino[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical Phenomenalow energy/MeV neutrinosElectrongamma ray: burst01 natural sciencesNuclear physicsLow energy/MeV neutrino0103 physical sciencesNeutrinoLow energy/MeV neutrinosNeutrinosNuclear Experiment010303 astronomy & astrophysicsGamma-ray burstBorexinoscintillation counterPhysicsflavor010308 nuclear & particles physicsbackgroundgamma-ray burstsneutrinosAntineutrinos; Gamma-ray bursts; Low energy/MeV neutrinos; Neutrinos; Astronomy and AstrophysicsAstronomy and Astrophysicssemileptonic decayantineutrinocorrelation: timeNeutrino detectorInverse beta decayddc:540Scintillation counterreadoutHigh Energy Physics::ExperimentBorexinoGamma-ray burstsNeutrinoGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Understanding the detector behavior through Montecarlo and calibration studies in view of the SOX measurement

2015

International audience; Borexino is an unsegmented neutrino detector operating at LNGS in central Italy. The experiment has shown its performances through its unprecedented accomplishments in the solar and geoneutrino detection. These performances make it an ideal tool to accomplish a state- of-the-art experiment able to test the existence of sterile neutrinos (SOX experiment). For both the solar and the SOX analysis, a good understanding of the detector response is fundamental. Consequently, calibration campaigns with radioactive sources have been performed over the years. The calibration data are of extreme importance to develop an accurate Monte Carlo code. This code is used in all the n…

HistoryGeoneutrinoCalibration (statistics)Physics::Instrumentation and DetectorsNuclear engineeringMonte Carlo method01 natural sciencesprogrammingParticle detectorEducationPhysics and Astronomy (all)0103 physical sciencesddc:530[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsSimulationBorexinoPhysics010308 nuclear & particles physicsDetectorneutrino: sterilecalibrationComputer Science::Computers and SocietyComputer Science ApplicationsNeutrino detectorBorexinoHigh Energy Physics::ExperimentNeutrinonumerical calculations: Monte Carloperformance
researchProduct

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Measurement of the polarization in νμ charged current interactions in the NOMAD experiment

2001

The Λ polarization in νμ charged current interactions has been measured in the NOMAD experiment. The event sample (8087 reconstructed Λ 's) is more than an order of magnitude larger than that of previous bubble chamber experiments, while the quality of event reconstruction is comparable. We observe negative polarization along the W -boson direction which is enhanced in the target fragmentation region: Px(xF 0)=−0.09±0.06(stat)±0.03(sys) . These results provide a test of different models describing the nucleon spin composition and the spin transfer mechanisms. A significant transverse polarization (in the direction orthogonal to the Λ production plane) has been observed for the first time in…

PhysicsNuclear and High Energy PhysicsAngular momentum010308 nuclear & particles physicsElementary particlePolarization (waves)7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesBubble chamberHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonCharged currentLeptonBosonNuclear Physics B
researchProduct

Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data

2017

A search for the solar neutrino effective magnetic moment has been performed using data from 1291.5 days exposure during the second phase of the Borexino experiment. No significant deviations from the expected shape of the electron recoil spectrum from solar neutrinos have been found, and a new upper limit on the effective neutrino magnetic moment of $\mu_{\nu}^{eff}$ $<$ 2.8$\cdot$10$^{-11}$ $\mu_{B}$ at 90\% c.l. has been set using constraints on the sum of the solar neutrino fluxes implied by the radiochemical gallium experiments.Using the limit for the effective neutrino moment, new limits for the magnetic moments of the neutrino flavor states, and for the elements of the neutrino magne…

Physics and Astronomy (miscellaneous)neutrino: solarPhysics::Instrumentation and DetectorsSolar neutrino01 natural sciencesHigh Energy Physics - ExperimentNeutrino detectorHigh Energy Physics - Experiment (hep-ex)SPIN ROTATIONHigh Energy Physics - Phenomenology (hep-ph)electron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Astrophysics::Solar and Stellar AstrophysicsBorexinoS066MGMgalliumPhysicsMagnetic momentneutrino: magnetic momentHigh Energy Physics - Phenomenologyneutrino: momentNeutrino detectorneutrino: flavorneutrino: MajoranaMeasurements of neutrino speedBorexinoNeutrinoupper limitParticle physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSolar neutrinoDECAYSMagnetic momentNuclear physicsstatistical analysis[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesddc:530010306 general physicsNeutrino oscillationDETECTORELECTROMAGNETIC PROPERTIES010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemMAJORANA NEUTRINOS[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]electron: energy spectrum[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentexperimental resultsPhysical Review D
researchProduct

Study of D*+ production in nu_mu charged current interactions in the NOMAD experiment

2002

A search was made among $\nu_\mu$ charged current events collected in the NOMAD experiment for the reaction: $\nu_\mu + N \rightarrow \mu^- + D^{\star+} + hadrons \hookrightarrow D^0 + \pi^+ \hookrightarrow K^- + \pi^+ A $D^{\star+}$ sample composed of 47 events, with 90% purity, was extracted. The $D^{\star+}$ yield in $\nu_\mu$ charged current interactions was measured to be $T = (0.99 \pm 0.15(stat.) \pm 0.11(syst.))$%. The mean fraction of the hadronic jet energy taken by the $D^{\star+}$ is $0.67 \pm 0.02(stat) \pm 0.02(syst.)$. The distributions of the fragmentation variables $z$, ${P_{T}}^2$ and $x_F$ for $D^{\star+}$ are also presented.

PhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::PhenomenologyHadronFísicaNuclear physicsFragmentation functionHigh Energy Physics::ExperimentAstrophysics::Earth and Planetary AstrophysicsNeutrinoNuclear ExperimentParticle Physics - ExperimentAstrophysics::Galaxy AstrophysicsCharged current
researchProduct

Neutrino production of opposite sign dimuons in the NOMAD experiment

2000

The NOMAD Collaboration presents a study of opposite sign dimuon events in the framework of Leading Order QCD. A total of 2714 neutrino- and 115 antineutrino-induced opposite sign dimuon events with $E_{\mu 1}, E_{\mu 2} > 4.5$ GeV, $15 1\;(\mbox{GeV}/\mbox{c})^{2}$ are observed %in the data from the 1995 and 1996 runs. in the Front-Calorimeter of NOMAD during the 1995 and 1996 runs. The analysis yields a value for the charm quark mass of $m_{c} = 1.3^{+0.3\;+0.3}_{-0.3\;-0.3}\;\mbox{GeV}/\m box{c}^{2}$ and for the average semileptonic branching ratio of $B_{c} = 0.095^{+0.007\;+0.014}_{-0.007\;-0.013}$. The ratio of the strange to non-strange sea in the nucleon is measured to be $\kappa = …

PhysicsNuclear and High Energy PhysicsParticle physicsMuon[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsBranching fractionOrder (ring theory)Física01 natural sciencesCharm quarkNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Production (computer science)Neutrino010306 general physicsNucleonParticle Physics - ExperimentEnergy (signal processing)
researchProduct

Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun

2014

The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as we…

Nuclear reactionPhysics - Instrumentation and DetectorsProtonneutrino: solarPhysics::Instrumentation and Detectors01 natural sciences7. Clean energynuclear reactionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)PositronstarPrimary (astronomy)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experiment[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]BorexinoPhysicsSPECTROSCOPYInstrumentation and Detectors (physics.ins-det)SOLAR NEUTRINOSAstrophysics - Solar and Stellar AstrophysicsBorexinoNeutrinomodel: solardeuteronGRAN SASSOParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]talk: Conca Specchiulla 2014/09/07[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationDETECTORSolar and Stellar Astrophysics (astro-ph.SR)neutrino: modelp p: fusion010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyDeuterium13. Climate actionspectralHigh Energy Physics::Experimentneutrino: oscillationexperimental results
researchProduct

Prediction of neutrino fluxes in the NOMAD experiment

2003

The method developed for the calculation of the flux and composition of the West Area Neutrino Beam used by NOMAD in its search for neutrino oscillations is described. The calculation is based on particle production rates computed using a recent version of FLUKA and modified to take into account the cross sections measured by the SPY and NA20 experiments. These particles are propagated through the beam line taking into account the material and magnetic fields they traverse. The neutrinos produced through their decays are tracked to the NOMAD detector. The fluxes of the four neutrino flavours at NOMAD are predicted with an uncertainty of about 8% for nu(mu) and nu(e), 10% for antinu(mu), and…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciences01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNeutrino oscillationInstrumentationCharged currentPhysicsNeutral current010308 nuclear & particles physicsDetectorHigh Energy Physics::PhenomenologyFísicaSolar neutrino problemMagnetic fieldBeamlineHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

High significance measurement of the terrestrial neutrino flux with the Borexino detector

2015

International audience; We review the geoneutrino measurement with Borexino from 2056 days of data taking.

HistoryParticle physicsSolar neutrinoFlux010502 geochemistry & geophysics01 natural sciencesneutrino: fluxNOEducationNuclear physicstalk: Torino 2015/09/07Physics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530Borexino0105 earth and related environmental sciencesPhysics010308 nuclear & particles physicsDetectorComputer Science ApplicationsNeutrino detectorMeasurements of neutrino speedBorexinoneutrino: geophysicsNeutrinoexperimental results
researchProduct

The Monte Carlo simulation of the Borexino detector

2017

We describe the Monte Carlo (MC) simulation package of the Borexino detector and discuss the agreement of its output with data. The Borexino MC 'ab initio' simulates the energy loss of particles in all detector components and generates the resulting scintillation photons and their propagation within the liquid scintillator volume. The simulation accounts for absorption, reemission, and scattering of the optical photons and tracks them until they either are absorbed or reach the photocathode of one of the photomultiplier tubes. Photon detection is followed by a comprehensive simulation of the readout electronics response. The algorithm proceeds with a detailed simulation of the electronics c…

Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsSolar neutrinoMonte Carlo methodscintillation counter: liquidSolar neutrinosenergy resolution01 natural sciences7. Clean energyLarge volume liquid scintillator detectorHigh Energy Physics - Experiment[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Large volume liquid scintillator detectorsBorexinoPhysicsphotomultipliertrack data analysisDetectorefficiency: quantumddc:540GEANTBorexinoNeutrinophoton: yieldnumerical calculations: Monte CarloPhotomultiplierdata analysis methodenergy lossScintillatorSolar neutrinoprogrammingphoton: reflectionMonte Carlo simulationsNuclear physics0103 physical sciencesphoton: scattering[INFO]Computer Science [cs][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsbackground: radioactivityMonte Carlo simulationdetector: designScintillation010308 nuclear & particles physicsbibliographyAstronomy and AstrophysicscalibrationLarge volume liquid scintillator detectors; Monte Carlo simulations; Solar neutrinos; Astronomy and Astrophysicsattenuation: lengthpile-upelectronics: readout
researchProduct

Neutrino Physics with JUNO

2016

The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plan…

Particle physicsSterile neutrinoNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsGeoneutrinoreactor neutrino experimentPhysics::Instrumentation and DetectorsSolar neutrinomedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciences7. Clean energy01 natural sciencesNOHigh Energy Physics - Experimentneutrino astronomyHigh Energy Physics - Experiment (hep-ex)neutrino physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino mass hierarchy reactor liquid scintillator010306 general physicsJiangmen Underground Neutrino Observatorymedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyneutrino physicInstrumentation and Detectors (physics.ins-det)Universereactor neutrino experimentslarge scintillator detectors; neutrino astronomy; neutrino physics; reactor neutrino experiments; Nuclear and High Energy PhysicsSupernovalarge scintillator detectors13. Climate actionPhysics::Space Physicslarge scintillator detectorHigh Energy Physics::ExperimentNeutrinoreactor neutrino experiments; large scintillator detectors; neutrino physics; neutrino astronomy
researchProduct

A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

2013

We present our new measurement of the cross-section for charm dimuon production in neutrino iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9 x 10(6) events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to similar to 2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea…

Nuclear and High Energy PhysicsStrange quarkParticle physicsCharm production; strange quark content of the nucleon; dimuon charm productionFOS: Physical sciencesCharm production ; Strange quark content of the nucleon ; Dimuon charm production ; Neutrino interactions01 natural sciencesCharm quarkHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)010306 general physicsCharged currentDimuon charm productionPhysicsQuantum chromodynamics010308 nuclear & particles physicsNeutrino interactionsFísicadimuon charm productionDeep inelastic scatteringstrange quark content of the nucleon3. Good healthCharm productionStrange quark content of the nucleonNeutrinoNucleonParticle Physics - Experiment
researchProduct

Recent results from Borexino

2016

Journal of Physics Conference Series. - 798, International Conference on Particle Physics and Astrophysics : 10-14 October 2016, Moscow, Russian Federation / proceedings editors: 1. issue: cosmic rays: Arkady Galper (MEPhI, Moscow, Russia) [und 7 andere] 2nd International Conference on Particle Physics and Astrophysics, ICPPA 2016, Moscow, Russia, 11 Oct 2016 - 14 Oct 2016; Bristol : IOP Publ., Journal of Physics Conference Series, 798, 012114 pp. (2017). doi:10.1088/1742-6596/798/1/012114

HistoryParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoContext (language use)53001 natural sciencesneutrino: fluxEducationPhysics::GeophysicsNuclear physicsPhysics and Astronomy (all)Low energyenergy: solar0103 physical sciencesEnergy spectrumddc:530010306 general physicsBorexinoscintillation counterPhysicsCharge conservationMultidisciplinary010308 nuclear & particles physicsstabilityComputer Science ApplicationsGran Sassoenergy: productionPhysics::Space PhysicsHigh Energy Physics::ExperimentBorexinoneutrino: geophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

A precise measurement of the muon neutrino nucleon inclusive charged current cross section off an isoscalar target in the energy range 2.5

2008

Abstract We present a measurement of the muon neutrino–nucleon inclusive charged current cross section, off an isoscalar target, in the neutrino energy range 2.5 ⩽ E ν ⩽ 40 GeV . The significance of this measurement is its precision, ±4% in 2.5 ⩽ E ν ⩽ 10 GeV , and ±2.6% in 10 ⩽ E ν ⩽ 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)Muon010308 nuclear & particles physicsIsoscalarAstrophysics::High Energy Astrophysical Phenomena01 natural sciencesNuclear physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Muon neutrinoHigh Energy Physics::ExperimentNeutrino010306 general physicsNucleonNeutrino oscillationNuclear ExperimentCharged current
researchProduct

A study of strange particles produced in neutrino neutral current interactions in the NOMAD experiment

2004

Results of a detailed study of strange particle production in neutrino neutral current interactions are presented using the data from the NOMAD experiment. Integral yields of neutral strange particles (K0s, Lambda, Lambda-bar) have been measured. Decays of resonances and heavy hyperons with an identified K0s or Lambda in the final state have been analyzed. Clear signals corresponding to K* and Sigma(1385) have been observed. First results on the measurements of the Lambda polarization in neutral current interactions have been obtained.

PhysicsNuclear and High Energy PhysicsParticle physicsStrange quarkNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHyperonFOS: Physical sciencesSigmaFísicaLambdaPolarization (waves)01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]High Energy Physics::ExperimentNeutrino010306 general physicsNuclear ExperimentParticle Physics - Experiment
researchProduct

A measurement of coherent neutral pion production in neutrino neutral current interactions in the NOMAD experiment

2009

We present a study of exclusive neutral pion production in neutrino-nucleus Neutral Current interactions using data from the NOMAD experiment at the CERN SPS. The data correspond to $1.44 \times 10^6$ muon-neutrino Charged Current interactions in the energy range $2.5 \leq E_{\nu} \leq 300$ GeV. Neutrino events with only one visible $\pi^0$ in the final state are expected to result from two Neutral Current processes: coherent $\pi^0$ production, {\boldmath $\nu + {\cal A} \to \nu + {\cal A} + \pi^0$} and single $\pi^0$ production in neutrino-nucleon scattering. The signature of coherent $\pi^0$ production is an emergent $\pi^0$ almost collinear with the incident neutrino while $\pi^0$'s pro…

Particle physicsNuclear and High Energy PhysicsFOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)PionCoherent pion neutrino neutral current0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Coherent pion neutrino neutral current; Nuclear and High Energy Physics010306 general physicsNuclear ExperimentCharged currentPhysicsRange (particle radiation)Large Hadron ColliderNeutral current010308 nuclear & particles physicsScatteringFísicaDeep inelastic scatteringcoherent pion ; neutrino ; neutral currentHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experiment
researchProduct

SOX : short distance neutrino oscillations with Borexino

2014

Abstract The Borexino detector has convincingly shown its outstanding performance in the in the sub-MeV regime through its unprecedented accomplishments in the solar and geo-neutrinos detection, which make it the ideal tool to unambiguously test the long-standing issue of the existence of a sterile neutrino, as suggested by several anomalies: the outputs of the LSND and Miniboone experiments, the results of the source calibration of the two Gallium solar ν experiments, and the recently hinted reactor anomaly. The SOX project will exploit two sources, based on chromium and cerium, which deployed under the experiment will emit two intense beams of ν e (Cr) and ν e ‾ (Ce). Interacting in the a…

Sterile neutrinoPhysics::Instrumentation and Detectorsscintillation counter: liquidtalk: Valencia 2014/07/027. Clean energy01 natural sciences[SPI]Engineering Sciences [physics][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BorexinoSterile neutrinogalliumPhysicsOscillationneutrino: sterilesolarceriumBorexinochromiumchromium-51neutrino: geophysicsNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAnomalous oscillations; Borexino; Cerium-144; Chromium-51; SOX; Sterile neutrinosanomalyneutrino/e: beamScintillatorcerium-144Anomalous oscillations; Borexino; Cerium-144; Chromium-51; SOX; Sterile neutrinos; Nuclear and High Energy PhysicsMiniBooNEsterile neutrinos0103 physical sciences010306 general physicsNeutrino oscillation010308 nuclear & particles physicschromium-51cerium-144calibrationGran SassoLSNDAnomalous oscillationSOXneutrino: familyHigh Energy Physics::Experimentnuclear reactorneutrino: oscillationAnomaly (physics)anomalous oscillationsexperimental resultsneutrino/e: oscillation
researchProduct

Solar neutrino detectors as sterile neutrino hunters

2016

International audience; The large size and the very low radioactive background of solar neutrino detectors such as Borexino at the Gran Sasso Laboratory in Italy offer a unique opportunity to probe the existence of neutrino oscillations into new sterile components by means of carefully designed and well calibrated anti-neutrino and neutrino artificial sources. In this paper we briefly summarise the key elements of the SOX experiment, a program for the search of sterile neutrinos (and other short distance effects) by means of a (144)Ce-(144)Pr anti-neutrino source and, possibly in the medium term future, with a (51)Cr neutrino source.

HistorySterile neutrinoParticle physicsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical Phenomena01 natural sciences7. Clean energyEducationPhysics and Astronomy (all)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex][PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationnuclideBorexinoPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemneutrino: sterileComputer Science ApplicationspraseodymiumGran Sassoneutrino: detectorNeutrino detectorcerium: nuclideHigh Energy Physics::Experimentneutrino: oscillationNeutrino astronomyNeutrinoantineutrino: particle source[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Large underground, liquid based detectors for astro-particle physics in Europe: scientific case and prospects

2007

This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large-scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatus employ three different and, to some extent, complementary detection techniques: GLACIER (liquid Argon TPC), LENA (liquid scintillator) and MEMPHYS (\WC), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to…

PhysicsParticle physicsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsDetectorActive detectionFOS: Physical sciencesAstronomy and AstrophysicsScintillator01 natural sciencesCritical discussionHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]0103 physical sciencesLiquid argonLiquid basedHigh Energy Physics::Experiment[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrino010306 general physicsParticle Physics - PhenomenologyJournal of Cosmology and Astroparticle Physics
researchProduct

The experimental facility for the Search for Hidden Particles at the CERN SPS

2019

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

TechnologyPhysics - Instrumentation and Detectorsbackground: inducedlarge detector systems for particle and astroparticle physicsSPSbeam transportElectron7. Clean energy01 natural sciences09 Engineeringdark matter detectors (wimps axions etc.)High Energy Physics - Experiment030218 nuclear medicine & medical imaginglaw.inventionNeutrino detectorHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineRecoillawetc.)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino detectorsDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detInstruments & InstrumentationInstrumentationbackground: suppressionMathematical Physicsnucleus: recoilPhysicsRange (particle radiation)tau neutrino02 Physical SciencesLarge Hadron Colliderbeam lossInstrumentation and Detectors (physics.ins-det)p: beamNuclear & Particles Physicsvacuum systemparticle: interactionDark Matter detectors (WIMPbeam opticsNeutrino detectorp: beam dumpPhysics - Instrumentation and Detectorproposed experimentParticle Physics - Experimentzirconium: admixtureFOS: Physical sciencesAccelerator Physics and Instrumentationbeam: ejectionp: targetHidden SectorNuclear physicsKKKK: SHiP03 medical and health sciences0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Beam dumpnumerical calculationsmuon: shieldingdetector: designactivity reportDark Matter detectors (WIMPsScience & Technologyhep-ex010308 nuclear & particles physicsLarge detector systems for particle and astroparticle physicsbeam-dump facilityAcceleratorfysik och instrumenteringCERN SPSHidden sectoraxionaxions etc.)Large detector systems for particle and astroparticle physicmolybdenum: alloyPhysics::Accelerator Physicstarget: designtitanium: admixtureBeam (structure)neutrino detectors
researchProduct

The Design and Sensitivity of JUNO's scintillator radiopurity pre-detector OSIRIS

2021

The European physical journal / C 81(11), 973 (2021). doi:10.1140/epjc/s10052-021-09544-4

Liquid scintillatorPhysics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidmeasurement methodsQC770-798Astrophysics01 natural sciencesthorium: nuclidedesign [detector]neutrinoRadioactive purityPhysicsLow energy neutrinoJUNOliquid [scintillation counter]biologySettore FIS/01 - Fisica SperimentaleDetectorInstrumentation and Detectors (physics.ins-det)3. Good healthQB460-466Physics::Space Physicsnuclide [uranium]FOS: Physical sciencesScintillatornuclide [thorium]530NONuclear physicsPE2_2uranium: nuclideNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsJUNO neutrino physics liquid scintillatorEngineering (miscellaneous)background: radioactivitydetector: designMeasurement method010308 nuclear & particles physicsradioactivity [background]biology.organism_classificationsensitivityHigh Energy Physics::ExperimentReactor neutrinoOsiris
researchProduct

JUNO sensitivity to low energy atmospheric neutrino spectra

2021

Atmospheric neutrinos are one of the most relevant natural neutrino sources that can be exploited to infer properties about cosmic rays and neutrino oscillations. The Jiangmen Underground Neutrino Observatory (JUNO) experiment, a 20 kton liquid scintillator detector with excellent energy resolution is currently under construction in China. JUNO will be able to detect several atmospheric neutrinos per day given the large volume. A study on the JUNO detection and reconstruction capabilities of atmospheric $\nu_e$ and $\nu_\mu$ fluxes is presented in this paper. In this study, a sample of atmospheric neutrino Monte Carlo events has been generated, starting from theoretical models, and then pro…

Physics and Astronomy (miscellaneous)Physics::Instrumentation and Detectorsscintillation counter: liquidenergy resolutionAtmospheric neutrinoQC770-798Astrophysics7. Clean energy01 natural sciencesneutrino: fluxHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)particle source [neutrino]neutrinoneutrino: atmosphere[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Cherenkovneutrino/e: particle identificationenergy: low [neutrino]Jiangmen Underground Neutrino ObservatoryPhysicsJUNOphotomultiplierliquid [scintillation counter]primary [neutrino]neutrino: energy spectrumDetectoroscillation [neutrino]neutrinosMonte Carlo [numerical calculations]atmosphere [neutrino]QB460-466observatorycosmic radiationComputer Science::Mathematical Softwareproposed experimentNeutrinonumerical calculations: Monte CarloComputer Science::Machine LearningParticle physicsdata analysis methodAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayScintillatorComputer Science::Digital LibrariesNOStatistics::Machine LearningPE2_2neutrino: primaryneutrino: spectrumNuclear and particle physics. Atomic energy. Radioactivity0103 physical sciencesddc:530structure010306 general physicsNeutrino oscillationEngineering (miscellaneous)Cherenkov radiationparticle identification [neutrino/mu]Scintillationneutrino/mu: particle identificationflavordetectorparticle identification [neutrino/e]010308 nuclear & particles physicsneutrino: energy: lowHigh Energy Physics::Phenomenologyspectrum [neutrino]resolutionenergy spectrum [neutrino]flux [neutrino]neutrino: particle source13. Climate actionHigh Energy Physics::Experimentneutrino: oscillationneutrino detector
researchProduct

Potential for a precision measurement of solar pp neutrinos in the Serappis experiment

2022

The European physical journal / C 82(9), 779 (2022). doi:10.1140/epjc/s10052-022-10725-y

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)530 PhysicsPhysics::Instrumentation and DetectorsneutriinotFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)530 Physik530High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ilmaisimetPhysics::Space Physicsddc:530auringonsäteilyEngineering (miscellaneous)
researchProduct