0000000001278510

AUTHOR

Irina Piazza

showing 8 related works from this author

Supercooled Water Confined in a Silica Xerogel: Temperature and Pressure Dependence of Boson Peak and of Mean Square Displacements

2013

A silica xerogel can be obtained from an alcoxide precursor (TMOS, tetramethylortosilcate) via the sol-gel method: TMOS hydrolysis and subsequent polycondensation yields a solid, disordered, porous SiO2 matrix (average pore dimensions ~20Å). Inside the pores water is trapped and the hydration level h=gr[H2O]/gr[SiO2] can be easily controlled. The presence and temperature dependence of the boson peak (BP) in xerogel confined supercooled water was studied with inelastic neutron scattering (spectrometer IN6 at ILL, Grenoble) in xerogel samples having h=0.4 and h=0.2. After careful subtraction of the contributions arising from the matrix and from quasi-elastic scattering, the BP contribution wa…

silica xerogel boson peak inelastic neutron scattering excess density of states LDL->HDL transition mean square displacements elastic neutron scattering protein dynamical transitionSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Anomalous water dynamics in brain: a combined diffusion magnetic resonance imaging and neutron scattering investigation

2019

International audience; Water diffusion is an optimal tool for investigating the architecture of brain tissue on which modern medical diagnostic imaging techniques rely. However, intrinsic tissue heterogeneity causes systematic deviations from pure free-water diffusion behaviour. To date, numerous theoretical and empirical approaches have been proposed to explain the non-Gaussian profile of this process. The aim of this work is to shed light on the physics piloting water diffusion in brain tissue at the micrometre-to-atomic scale. Combined diffusion magnetic resonance imaging and first pioneering neutron scattering experiments on bovine brain tissue have been performed in order to probe dif…

Medical diagnosticMaterials science[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/ImagingQuantitative Biology::Tissues and OrgansPhysics::Medical PhysicsBiomedical EngineeringBiophysicsproton dynamicsBioengineeringbrain imagingNeutron scatteringBiochemistryAtomic unitsBiomaterials03 medical and health sciences0302 clinical medicineTissue heterogeneityWater dynamicsNuclear magnetic resonancemedicineAnimalsDiffusion (business)030304 developmental biologydiffusion magnetic resonance imaging0303 health sciencesProton dynamicmedicine.diagnostic_testneutron scatteringBrainWaterMagnetic resonance imagingwater diffusionLife Sciences–Physics interfaceMagnetic Resonance ImagingSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Neutron Diffraction[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/ImagingBovine brainBrain imaging; Diffusion magnetic resonance imaging; Neutron scattering; Proton dynamics; Water diffusionCattle030217 neurology & neurosurgeryBiotechnology
researchProduct

Dynamical properties of water in living cells

2018

With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confi…

Properties of waterScale (ratio)HydrogenPhysics and Astronomy (miscellaneous)chemistry.chemical_elementNeutron scattering010402 general chemistrySpace (mathematics)01 natural sciencesSignalchemistry.chemical_compoundOpticsquasi-elastic neutron scatteringwater structure and dynamicintracellular water0103 physical sciences010306 general physicsintracellular water; quasi-elastic neutron scattering; water structure and dynamics; Physics and Astronomy (miscellaneous)Physicsbusiness.industryScatteringSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)0104 chemical scienceswater structure and dynamicschemistryPicosecondbusinessBiological system
researchProduct

Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.

2014

International audience; In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO 2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The " pressure anomaly " of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperatur…

liquid-liquid transitionPhase transitionPACS: 64.70.Ja 64.70.pm 25.40.DnMaterials scienceNeutron diffractionGeneral Physics and AstronomyThermodynamicsNeutron scatteringSettore FIS/03 - Fisica Della MateriaPhase TransitionNuclear magnetic resonanceWater Movementsglass transitionElastic neutron scattering[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]SupercoolingElastic neutron scattering; calorimetry; glass transition; liquid-liquid transitionAtmospheric pressure[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM]Calorimetry Differential ScanningWaterSilicon DioxideSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Cold Temperature[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biomolecules [q-bio.BM]Neutron DiffractionModels ChemicalGlass transitioncalorimetryHydrophobic and Hydrophilic InteractionsAmbient pressureBar (unit)HydrogenPhysical review letters
researchProduct

Water Dynamics in Biological Systems investigated using Neutron Scattering Techniques

Living systems can not survive in absence of the water environments which play a fundamental role in living functions. Thus in the scienti?c community many studies were and are addressed to characterize water and its dynamics properties in biological systems. However, a clear description of water in such systems has been not reached yet. In fact, the investigations performed with di?erent techniques - those based on Nuclear Magnetic Resonance or those based on Neutron Scattering - look at di?erent di?usive motions and interactions water-biomolecules, leading controversial results and hence generating many debates between scientists. In this thesis we support the idea that two water populati…

quasi-elastic neutron scattering intracellular water water structure and dynamics bovine brain tissues cellular systems sucrose solutionsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Exploring Cell Biodiversity

2015

Brain tissue is a really complex system composed of different cell types that change in shape and size. A single neuron itself has a cell body, dendrites and an axon. About 80% of cerebral tissue consists of water molecules that are confined (intra and extra cellular) in its disordered biologic networks. Using neutron scattering on IN13 we are able to explore hydrogens (H) dynamics in time scale at about 40 ps and in size scale at about 1 Å. Such characteristic make it suitable to investigate brain tissue heterogeneity exploiting hydrogens as a probe since major constituent of macromolecules and water. Elastic neutron scattering (ENS) gives information about means square displacement (MSDs)…

neutron scattering brain tissue mean square displacement
researchProduct

Erratum to: Dynamical properties of water in living cells (Front. Phys, (2018) 13, 1, 138301, 10.1007/s11467-017-0731-5)

2018

In the original publication of the article, the label Q2(A-2) in Fig. 4 should be replaced with Q(A-1). Below is the correct Fig. 4.[Figure not available: see fulltext.]. © 2018, Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature.

Physics and Astronomy (miscellaneous)-Settore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)
researchProduct

Exploring cell biodiversity - Neutron scattering investigation of water diffusion in complex system

2015

Scientists from biophysics, biology and medicine fields are interested in exploring and characterizing topologically cerebral tissue in order to diagnostic different diseases which affect brain in many patients [1-3]. One of the most diffuse diagnostic techniques is dMRI (diffusion magnetic resonance imaging) which extracts information about heterogeneity and asymmetries in brain tissue studying water diffusion dynamics (~80% mass constituent of tissues). The experimental limit of this technique is related to the acquisition time, TA, of the order of milliseconds. Water molecules diffuse within micrometre distance using TA as diffuse time (Eistein equation D~2TA). Cells have micrometric siz…

neutron scattering brain tissue proton dynamics
researchProduct