0000000001290760
AUTHOR
Aaron C. Vincent
Analysis of the 4-year IceCube high-energy starting events
After four years of data taking, the IceCube neutrino telescope has detected 54 high-energy starting events (HESE, or contained-vertex events) with deposited energies above 20TeV. They represent the first ever detection of high-energy extraterrestrial neutrinos and therefore, the first step in neutrino astronomy. In order to study the energy, flavor and isotropy of the astrophysical neutrino flux arriving at Earth, we perform different analyses of two different deposited energy intervals, [10 TeV $-$ 10 PeV] and [60 TeV $-$ 10 PeV]. We first consider an isotropic unbroken power-law spectrum and constrain its shape, normalization and flavor composition. Our results are in agreement with the …
Constraints on dark matter annihilation from CMB observations before Planck
We compute the bounds on the dark matter (DM) annihilation cross section using the most recent Cosmic Microwave Background measurements from WMAP9, SPT'11 and ACT'10. We consider DM with mass in the MeV-TeV range annihilating 100% into either an e(+)e(-) or a mu(+)mu(-) pair. We consider a realistic energy deposition model, which includes the dependence on the redshift, DM mass and annihilation channel. We exclude the canonical thermal relic abundance cross section ( = 3 x 10(-26) cm(3)s(-1)) for DM masses below 30 GeV and 15 GeV for the e(+)e(-) and mu(+)mu(-) channels, respectively. A priori, DM annihilating in halos could also modify the reionization history of the Universe at late times…
On the flavor composition of the high-energy neutrinos in IceCube
The IceCube experiment has recently released 3 years of data of the first ever detected high-energy (>30 TeV) neutrinos, which are consistent with an extraterrestrial origin. In this talk, we compute the compatibility of the observed track-to-shower ratio with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although this observation is naively favored for the canonical (1:1:1) at Earth, once we consider the IceCube expectations for the atmospheric muon and neutrino backgrounds, this flavor combination presents some tension with data. We find that, for an astrophysical neutrino E_nu^{-2} energy spectrum, (1:1:1) at Earth is currently disfav…
Spectral analysis of the high-energy IceCube neutrinos
A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the ~30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canoni…
Revisiting cosmological bounds on sterile neutrinos
We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutri…
On the flavor composition of the high-energy neutrino events in IceCube
The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although the 7:21 track-to-shower ratio is naively favored for the canonical (1:1:1) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E^(-2) energy spectrum, (1:1:1) at Earth is disfavored at 81% C.L. If this proportion does not c…
Cosmological origin of anomalous radio background
The ARCADE 2 collaboration has reported a significant excess in the isotropic radio background, whose homogeneity cannot be reconciled with clustered sources. This suggests a cosmological origin prior to structure formation. We investigate several potential mechanisms and show that injection of relativistic electrons through late decays of a metastable particle can give rise to the observed excess radio spectrum through synchrotron emission. However, constraints from the cosmic microwave background (CMB) anisotropy, on injection of charged particles and on the primordial magnetic field, present a challenge. The simplest scenario is with a greater than or similar to 9 GeV particle decaying i…
Exploring dark matter microphysics with galaxy surveys
We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard $\Lambda$CDM scenario. To quantify this statement, we focus on an extension of $\Lambda$CDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cos…
Light bosons and photospheric solutions to the solar abundance problem
It is well known that current spectroscopic determinations of the chemical composition of the Sun are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line-formation occurs. Although non-resonant conversion in the line-forming regions can in principle impact derived abundances, constraints from axion-photon conversion experiments…
Thermal conduction by dark matter with velocity and momentum-dependent cross-sections
We use the formalism of Gould and Raffelt to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients $\alpha$ and $\kappa$ for cross-sections that go as $v_{\rm rel}^2$, $v_{\rm rel}^4$, $v_{\rm rel}^{-2}$, $q^2$, $q^4$ and $q^{-2}$, where $v_{\rm rel}$ is the relative DM-nucleus velocity and $q$ is the momentum transferred in the collision. We find that a $v_{\rm rel}^{-2}$ dependence can sig…
Light bosons in the photosphere and the solar abundance problem
Spectroscopy is used to measure the elemental abundances in the outer layers of the Sun, whereas helioseismology probes the interior. It is well known that current spectroscopic determinations of the chemical composition are starkly at odds with the metallicity implied by helioseismology. We investigate whether the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We examine the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances, showing that resonant axion-photon conversion is not possible in the region of the solar atmosphere in which line formation occurs. Although non-resonant conversion i…
Constraining dark matter late-time energy injection: decays and p-wave annihilations
We use the latest cosmic microwave background (CMB) observations to provide updated constraints on the dark matter lifetime as well as on p-wave suppressed annihilation cross sections in the 1 MeV to 1 TeV mass range. In contrast to scenarios with an s-wave dominated annihilation cross section, which mainly affect the CMB close to the last scattering surface, signatures associated with these scenarios essentially appear at low redshifts ($z \lesssim 50$) when structure began to form, and thus manifest at lower multipoles in the CMB power spectrum. We use data from Planck, WMAP9, SPT and ACT, as well as Lyman-$\alpha$ measurements of the matter temperature at $z \sim 4$ to set a 95 % confide…
The 21 cm signal and the interplay between dark matter annihilations and astrophysical processes
Future dedicated radio interferometers, including HERA and SKA, are very promising tools that aim to study the epoch of reionization and beyond via measurements of the 21 cm signal from neutral hydrogen. Dark matter (DM) annihilations into charged particles change the thermal history of the Universe and, as a consequence, affect the 21 cm signal. Accurately predicting the effect of DM strongly relies on the modeling of annihilations inside halos. In this work, we use up-to-date computations of the energy deposition rates by the products from DM annihilations, a proper treatment of the contribution from DM annihilations in halos, as well as values of the annihilation cross section allowed by…
The Flavour Composition of the High-Energy IceCube Neutrinos
We present an in-depth analysis of the flavour and spectral composition of the 36 high-energy neutrino events observed after three years of observation by the IceCube neutrino telescope. While known astrophysical sources of HE neutrinos are expected to produce a nearly $(1:1:1)$ flavour ratio (electron : muon : tau) of neutrinos at earth, we show that the best fits based on the events detected above $E_\nu \ge 28$ TeV do not necessarily support this hypothesis. Crucially, the energy range that is considered when analysing the HE neutrino data can have a profound impact on the conclusions. We highlight two intriguing puzzles: an apparent deficit of muon neutrinos, seen via a deficit of track…