0000000001299652

AUTHOR

Il'ya A. Gural'skiy

showing 40 related works from this author

Pyridazine-Supported Polymeric Cyanometallates with Spin Transitions

2019

Heterometallic cyano-bridged spin-crossover complexes form a large family of switchable compounds with different structural motives and diverse transition characteristics. Here we report on the hysteretic water-dependent spin transitions found in the family of [Fe(pyridazine)2M(CN)4] frameworks (M = Ni, Pd, Pt). The structure of three new spin-crossover compounds is built of cyanometallic layers supported by pyridazine ligands. The frameworks contain water guest molecules that can be removed upon heating. Spin transition was found in both hydrated and dehydrated compounds, while the removal of water stimulated a complete spin state switch. Mössbauer spectroscopy revealed two different …

Condensed matter physics010405 organic chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryPyridazinechemistry.chemical_compoundchemistrySpin crossoverMössbauer spectroscopy0210 nano-technologySpin (physics)European Journal of Inorganic Chemistry
researchProduct

Chiral spin crossover nanoparticles and gels with switchable circular dichroism

2015

Spin crossover complexes represent spectacular examples of molecular switchable materials. We describe a new approach towards homochiral coordination nanoparticles of [Fe(NH2trz)3](L-CSA)2 (NH2trz = 4-amino-1,2,4-triazole, L-CSA = L-camphorsulfonate) that display an abrupt switch of chiral properties associated with a cooperative spin transition. This is an original method that generates stable and additive-free colloidal solutions of nanoparticles with a spin transition around room temperature. The introduction of a chiral anion to the coordination framework makes these nanoparticles display specific chiro-optical (circular dichroism) properties that are different in high and low spin stat…

Circular dichroismMaterials scienceBistabilitySpin statesChemical physicsSpin crossoverMaterials ChemistrySupramolecular chemistrySpin transitionNanoparticleNanotechnologyGeneral ChemistryIonJournal of Materials Chemistry C
researchProduct

High temperature spin crossover in [Fe(pyrazine){Ag(CN) 2 } 2 ] and its solvate

2016

A high temperature spin crossover (Tup = 367 K) was detected in a metal–organic framework [Fe(pz){Ag(CN)2}2]·MeCN (pz = pyrazine). Upon heating, this solvate released acetonitrile guest molecules, which slightly shifted the transition temperature of the complex (Tup = 370 K and Tdown = 356 K).

Pyrazine010405 organic chemistryTransition temperatureGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical sciences3. Good healthCrystallographychemistry.chemical_compoundchemistrySpin crossoverMaterials ChemistryMoleculeAcetonitrileNew Journal of Chemistry
researchProduct

Crystal structure of a low-spin poly[di-μ3-cyanido-di-μ2-cyanido-bis(μ2-2-ethylpyrazine)dicopper(I)iron(II)]

2019

In the title metal–organic framework, [Fe(C6H8N2)2{Cu(CN)2}2] n , the low-spin FeII ion lies at an inversion centre and displays an elongated octahedral [FeN6] coordination environment. The axial positions are occupied by two symmetry-related bridging 2-ethylpyrazine ligands, while the equatorial positions are occupied by four N atoms of two pairs of symmetry-related cyanide groups. The CuI centre is coordinated by three cyanide carbon atoms and one N atom of a bridging 2-ethylpyrazine molecule, which form a tetrahedral coordination environment. Two neighbouring Cu atoms have a short Cu...Cu contact [2.4662 (7) Å] and their coordination tetrahedra are connected through a common edge between…

crystal structurePyrazineCyanide02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesIonmetal–organic frameworkchemistry.chemical_compoundAtomGeneral Materials ScienceBimetallic stripCrystallographyChemistryGeneral Chemistrydicyanocuprate021001 nanoscience & nanotechnologyCondensed Matter Physicsiron(II)0104 chemical sciencescopper(I)CrystallographybimetallicQD901-999Metal-organic frameworkethylpyrazine0210 nano-technologyActa Crystallographica Section E: Crystallographic Communications
researchProduct

Hofmann-Like Frameworks Fe(2-methylpyrazine)n[M(CN)2]2 (M = Au, Ag) : Spin-Crossover Defined by the Precious Metal

2020

Hofmann-like cyanometalates constitute a large class of spin-crossover iron(II) complexes with variable switching properties. However, it is not yet clearly understood how the temperature and cooperativity of a spin transition are influenced by their structure. In this paper, we report the synthesis and crystal structures of the metal–organic coordination polymers {FeII(Mepz)[AuI(CN)2]2} ([Au]) and {FeII(Mepz)2[AgI(CN)2]2} ([Ag]), where Mepz = 2-methylpyrazine, along with characterization of their spin-state behavior by variable-temperature SQUID magnetometry and Mössbauer spectroscopy. The compounds are built of cyanoheterometallic layers, which are pillared by the bridging Mepz…

chemistry.chemical_classificationLarge classOorganisk kemi010405 organic chemistryIronSpin transitionCooperativityPolymerCrystal structureAtmospheric temperature range010402 general chemistrySpin crossover01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistrySpin crossovermagnetismMössbauer spectroscopyPhysical and Theoretical ChemistryMOF
researchProduct

Room temperature hysteretic spin crossover in a new cyanoheterometallic framework.

2019

A new iron(II)-based spin-crossover compound with thermal hysteresis operating under ambient conditions is reported. This complex exhibits a high reproducibility of the spin transition in many successive thermal cycles, stability of both spin states at room temperature and an attractive operational temperature range.

Range (particle radiation)Thermal hysteresisMaterials scienceSpin statesCondensed matter physics010405 organic chemistryMetals and AlloysSpin transitionGeneral Chemistry010402 general chemistryOperation temperature01 natural sciences7. Clean energyCatalysis0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSpin crossoverThermalMaterials ChemistryCeramics and CompositesCondensed Matter::Strongly Correlated ElectronsChemical communications (Cambridge, England)
researchProduct

Crystal structure of catena-poly[[[(2-ethoxypyrazine-κN)copper(I)]-di-μ2-cyanido] [copper(I)-μ2-cyanido]]

2019

The title compound, {[Cu(EtOpz)(CN)2][CuCN]}n, where EtOpz is 2-eth­oxy­pyrazine, is a two-dimensional polymeric copper complex with different coordination environments of the two CuI ions. One Cu atom is coordinated to the 2-eth­oxy­pyrazine mol­ecule and two bridging cyanide ligands, equally disordered over two sites. The second Cu atom is coordinated by two disordered over two sites bridging cyanide groups. Two copper–cyanide chains are connected through Cu⋯Cu contact.

crystal structurePyrazineCyanidechemistry.chemical_elementeth­oxy­pyrazineCrystal structure010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciencesResearch CommunicationsCoordination complexmetal–organic frameworkchemistry.chemical_compoundAtomGeneral Materials ScienceCoordination geometrychemistry.chemical_classificationCrystallographyethoxypyrazinecyanidesGeneral ChemistryCondensed Matter PhysicsCoppercopper(I)0104 chemical sciencesCrystallographychemistryQD901-999Metal-organic frameworkActa Crystallographica Section E Crystallographic Communications
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2], the Fe(III) ion is coordinated by four thio-cyanate N atoms and two pyridine N atoms in a trans arrangement, forming an FeN6 polyhedron with a slightly distorted octa-hedral geometry. Charge balance is achieved by one pyridinium cation bound to the complex anion via N-H⋯S hydrogen bonding. The asymmetric unit consists of one Fe(III) cation, four thio-cyanate anions, two coordinated pyridine mol-ecules and one pyridinium cation. The structure exhibits π-π inter-actions between pyridine rings [centroid-centroid distances = 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å]. The N atom and a neighboring C atom of the pyridinium cation are statistically d…

Metal-Organic PapersbiologyHydrogen bondThio-General ChemistryCondensed Matter Physicsbiology.organism_classificationIonchemistry.chemical_compoundCrystallographychemistryPyridineAtomTetraGeneral Materials SciencePyridiniumActa Crystallographica Section E Structure Reports Online
researchProduct

Iron (II) isothiocyanate complexes with substituted pyrazines: Experimental and theoretical views on their electronic structure

2015

Abstract Synthesis, structural, magnetic, Mossbauer and thermal studies of isothiocyanate iron (II) complexes with substituted pyrazines (iodo-, bromo- and amino-derivatives) are discussed here. Complexes with iodo- and bromo-derivatives were found to have the composition [Fe(Ipz)2(SCN)2(H2O)2]·2Ipz (1) and [Fe(Brpz)2(SCN)2(H2O)2]·2Brpz (2), whereas in the case of amino-functionalized pyrazine the formation of [Fe(NH2pz)4(SCN)2] (3) was observed. 3D organization of the molecular complexes is stabilized within different hydrogen, halogen and lone pair–π interactions. Spin state of iron (II) ions in 1–3 was determined as high spin by Mossbauer and magnetic measurements. DFT calculations for t…

complexesSpin statesPyrazineHydrogenspin stateMössbauer spectroscopyInorganic chemistrychemistry.chemical_elementElectronic structure3. Good healthInorganic Chemistrychemistry.chemical_compoundCrystallographyironchemistryIsothiocyanateMössbauer spectroscopyHalogenMaterials ChemistrypyrazinePhysical and Theoretical Chemistryta116Lone pairPolyhedron
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2], the FeIII ion is coordinated by four thiocyanate N atoms and two pyridine N atoms in a trans arrangement, forming an FeN6 polyhedron with a slightly distorted octahedral geometry. Charge balance is achieved by one pyridinium cation bound to the complex anion via N—H...S hydrogen bonding. The asymmetric unit consists of one FeIII cation, four thiocyanate anions, two coordinated pyridine molecules and one pyridinium cation. The structure exhibits π–π interactions between pyridine rings [centroid–centroid distances = 3.7267 (2), 3.7811 (2) and 3.8924 (2) Å]. The N atom and a neighboring C…

CrystallographyQD901-999Acta Crystallographica Section E
researchProduct

Cooperative High-Temperature Spin Crossover Accompanied by a Highly Anisotropic Structural Distortion

2016

Spin transitions are a spectacular example of molecular switching that can provoke extreme electronic and structural reorganizations in coordination compounds. A new 3D cyanoheterometallic framework, [Fe(pz)(Au(CN)2)2], has been synthesized in which a highly cooperative spin crossover has been observed at 367 and 349 K in heating and cooling modes, respectively. Mössbauer spectroscopy revealed a complete transition between the diamagnetic and paramagnetic states of the iron centres. The low-spin-to-high-spin transition induced a drastic structural distortion involving a large one-directional expansion (ca. 10.6%) and contraction (ca. 9.6%) of the lattice. Negative thermal expansion along th…

chemistry.chemical_classificationCondensed matter physicsCooperative effects010405 organic chemistryChemistryTransition temperatureIronMetal-organic frameworks010402 general chemistrySpin crossover01 natural sciences0104 chemical sciencesCoordination complexInorganic ChemistryParamagnetismNuclear magnetic resonanceNegative thermal expansionSpin crossoverQD156Mössbauer spectroscopyMagnetic propertiesQD473DiamagnetismAnisotropy
researchProduct

Enantioselective Guest Effect on the Spin State of a Chiral Coordination Framework

2015

The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin-sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2-butanol, and these solvates with (R)- and (S)-alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both fr…

Spin statesChemistryStereochemistryCoordination polymerOrganic ChemistryEnantioselective synthesisSpin transitionGeneral ChemistryCatalysisCrystallographychemistry.chemical_compoundSpin crossoverDiamagnetismMoleculeChirality (chemistry)Chemistry - A European Journal
researchProduct

Pyridinium bis(pyridine-κN)tetrakis(thiocyanato-κN)ferrate(III) -pyrazine-2-carbonitrile-pyridine (1/4/1)

2013

In the title compound, (C5H6N)[Fe(NCS)4(C5H5N)2]·4C5H3N3·C5H5N, the Fe(III) ion is located on an inversion centre and is six-coordinated by four N atoms of the thio-cyanate ligands and two pyridine N atoms in a trans arrangement, forming a slightly distorted octa-hedral geometry. A half-occupied H atom attached to a pyridinium cation forms an N-H⋯N hydrogen bond with a centrosymmetrically-related pyridine unit. Four pyrazine-2-carbo-nitrile mol-ecules crystallize per complex anion. In the crystal, π-π stacking inter-actions are present [centroid-centroid distances = 3.6220 (9), 3.6930 (9), 3.5532 (9), 3.5803 (9) and 3.5458 (8) Å].

Metal-Organic PapersPyrazinebiologyNitrileHydrogen bondStackingThio-General ChemistryCondensed Matter PhysicsBioinformaticsbiology.organism_classificationMedicinal chemistrychemistry.chemical_compoundchemistryPyridineTetraGeneral Materials SciencePyridiniumta116Acta Crystallographica Section E : Structure Reports Online
researchProduct

Co–Co and Co–Fe cyano-bridged pentanuclear clusters based on a methylpyrazinyl-diamine tetradentate ligand: spin crossover and metal substitution eff…

2017

A pentanuclear [CoII3CoIII2] cluster complex has been developed by a solvothermal synthesis. Its highly stable metal-mixed Fe–Co derivatives display robust spin crossover (T1/2 = 268 K) controlled by the degree of substitution.

010405 organic chemistrySolvothermal synthesisSubstitution (logic)General Chemistry010402 general chemistryCondensed Matter PhysicsPhotochemistry01 natural sciences0104 chemical sciencesMetalCrystallographychemistry.chemical_compoundDegree of substitutionchemistrySpin crossovervisual_artDiaminevisual_art.visual_art_mediumCluster (physics)General Materials ScienceTetradentate ligandCrystEngComm
researchProduct

Spin-State-Dependent Redox-Catalytic Activity of a Switchable Iron(II) Complex

2017

The spin state of catalytically active 3d metal centers plays a significant role for their activity in enzymatic processes and organometallic catalysis. Here we report on the catalytic activity of a Fe(II) coordination compound that can undergo a cooperative switch between low-spin (LS) and high-spin (HS) states. Catalytic measurements within 291 - 318 K temperature region reveal a drastic drop of the catalytic activity upon conversion of metallic centers from the LS to the HS form. For a thermoswitchable [Fe(NH2trz)3]Br2 complex (Tup = 305 K), an activation energy is found to be considerably lower for the LS state (158 kJ mol-1) comparing to the HS state (305 kJ mol-1). Mossbauer analysis …

chemistry.chemical_classificationSpin statesInorganic chemistry02 engineering and technologyActivation energy010402 general chemistry021001 nanoscience & nanotechnologyHeterogeneous catalysis01 natural sciencesRedox0104 chemical sciencesCoordination complexCatalysisInorganic ChemistryMetalCrystallographychemistrySpin crossovervisual_artvisual_art.visual_art_medium0210 nano-technologyEuropean Journal of Inorganic Chemistry
researchProduct

Spin Crossover in Fe(II)–M(II) Cyanoheterobimetallic Frameworks (M = Ni, Pd, Pt) with 2-Substituted Pyrazines

2016

Discovery of spin-crossover (SCO) behavior in the family of Fe(II)-based Hofmann clathrates has led to a "new rush" in the field of bistable molecular materials. To date this class of SCO complexes is represented by several dozens of individual compounds, and areas of their potential application steadily increase. Starting from Fe(2+), square planar tetracyanometalates M(II)(CN)4(2-) (M(II) = Ni, Pd, Pt) and 2-substituted pyrazines Xpz (X = Cl, Me, I) as coligands we obtained a series of nine new Hofmann clathrate-like coordination frameworks. X-ray diffraction reveals that in these complexes Fe(II) ion has a pseudo-octahedral coordination environment supported by four μ4-tetracyanometallat…

tetracyanometalates010405 organic chemistryChemistryStereochemistrypyrazines010402 general chemistry01 natural sciences0104 chemical sciences3. Good healthIonInorganic Chemistrycoordination polymersCrystallographySpin crossoverspin-crossoverMoleculePhysical and Theoretical ChemistryMolecular materialsta116Inorganic Chemistry
researchProduct

Multiple spin phases in a switchable Fe(ii) complex: polymorphism and symmetry breaking effects

2018

Polymorphism in spin-crossover (SCO) compounds allows accessing additional forms of switchable materials with diverse transition properties. We have prepared three polymorphs of a new complex [FeLBr(dca)2], where LBr is N,N′-bis[(5-bromo-2-pyridyl)methyl]ethane-1,2-diamine and dca is dicyanamide. They display different SCO properties: the α-form displays a hysteretic one-step switch centered at 134 K, the β-form undergoes hysteretic two-step spin transition with a plateau (T1/2 = 153 and 144 K) and the γ-form remains high spin (HS) over the whole temperature region. The kinetic origin of the hysteresis loop was demonstrated in temperature rate dependent magnetic measurements. Spin transitio…

Magnetic measurementsMaterials scienceSpin transition02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyKinetic energy01 natural sciences0104 chemical sciencesCrystallographychemistry.chemical_compoundPolymorphism (materials science)chemistryMössbauer spectroscopyMaterials ChemistrySymmetry breaking0210 nano-technologySingle crystalDicyanamideJournal of Materials Chemistry C
researchProduct

Haloperoxidase Mimicry by CeO2−xNanorods Combats Biofouling

2016

CeO2-x nanorods are functional mimics of natural haloperoxidases. They catalyze the oxidative bromination of phenol red to bromophenol blue and of natural signaling molecules involved in bacterial quorum sensing. Laboratory and field tests with paint formulations containing 2 wt% of CeO2-x nanorods show a reduction in biofouling comparable to Cu2 O, the most typical biocidal pigment.

Phenol redMechanical EngineeringBromophenol blue02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesBiofoulingchemistry.chemical_compoundQuorum sensingPigmentchemistryMechanics of MaterialsHaloperoxidasevisual_artvisual_art.visual_art_mediumEnzyme mimicGeneral Materials ScienceNanorod0210 nano-technologyAdvanced Materials
researchProduct

CCDC 1422402: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422398: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422396: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422397: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1838583: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-nickel monohydrate)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422405: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1422399: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1569643: Experimental Crystal Structure Determination

2017

Related Article: Bin Fei, Jian Zhou, Zheng Yan, Sergii I. Shylin, Vadim Ksenofontov, Il'ya A. Gural'skiy, Xin Bao|2017|CrystEngComm|19|7079|doi:10.1039/C7CE01826F

hexakis(mu-cyano)-tris(N1N2-dimethyl-N1N2-bis[(pyrazin-2-yl)methyl]ethane-12-diamine)-hexacyano-tri-cobalt-di-ironSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422403: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1838587: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-platinum monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1478973: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Bohdan O. Golub, Vadim Ksenofontov, Igor O. Fritsky, Wolfgang Tremel|2016|New J.Chem.|40|9012|doi:10.1039/C6NJ01472K

Space GroupCrystallographycatena-(tetrakis(mu-cyano)-(mu-pyrazine)-iron-di-silver acetonitrile solvate)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838584: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-nickel monohydrate)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1569642: Experimental Crystal Structure Determination

2017

Related Article: Bin Fei, Jian Zhou, Zheng Yan, Sergii I. Shylin, Vadim Ksenofontov, Il'ya A. Gural'skiy, Xin Bao|2017|CrystEngComm|19|7079|doi:10.1039/C7CE01826F

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametershexakis(mu-cyano)-tris(N1N2-dimethyl-N1N2-bis[(pyrazin-2-yl)methyl]ethane-12-diamine)-hexacyano-penta-cobaltExperimental 3D Coordinates
researchProduct

CCDC 1838585: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-palladium monohydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1878182: Experimental Crystal Structure Determination

2019

Related Article: Volodymyr M. Hiiuk, Sergiu Shova, Aurelian Rotaru, Vadim Ksenofontov, Igor O. Fritsky, Il'ya A. Gural'skiy|2019|Chem.Commun.|55|3359|doi:10.1039/C8CC10260K

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tetrakis(mu-cyano)-(mu-16-naphthyridine)-(16-naphthyridine)-iron(ii)-di-silver(i))
researchProduct

CCDC 1838588: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-platinum monohydrate)Experimental 3D Coordinates
researchProduct

CCDC 1422404: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1838586: Experimental Crystal Structure Determination

2019

Related Article: Il'ya A. Gural'skiy, Sergii I. Shylin, Vadim Ksenofontov, and Wolfgang Tremel|2019|Eur.J.Inorg.Chem.|2019|4532|doi:10.1002/ejic.201900782

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu-cyano)-bis(pyridazine)-iron-palladium monohydrate)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1422400: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct

CCDC 1569644: Experimental Crystal Structure Determination

2017

Related Article: Bin Fei, Jian Zhou, Zheng Yan, Sergii I. Shylin, Vadim Ksenofontov, Il'ya A. Gural'skiy, Xin Bao|2017|CrystEngComm|19|7079|doi:10.1039/C7CE01826F

hexakis(mu-cyano)-tris(N1N2-dimethyl-N1N2-bis[(pyrazin-2-yl)methyl]ethane-12-diamine)-hexacyano-tri-cobalt-di-ironSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1878181: Experimental Crystal Structure Determination

2019

Related Article: Volodymyr M. Hiiuk, Sergiu Shova, Aurelian Rotaru, Vadim Ksenofontov, Igor O. Fritsky, Il'ya A. Gural'skiy|2019|Chem.Commun.|55|3359|doi:10.1039/C8CC10260K

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-(tetrakis(mu-cyano)-(mu-16-naphthyridine)-(16-naphthyridine)-iron(ii)-di-silver(i))
researchProduct

CCDC 1422401: Experimental Crystal Structure Determination

2016

Related Article: Il'ya A. Gural'skiy, Bohdan O. Golub, Sergii I. Shylin, Vadim Ksenofontov, Helena J. Shepherd, Paul R. Raithby, Wolfgang Tremel and Igor O. Fritsky|2016|Eur.J.Inorg.Chem.||3191|doi:10.1002/ejic.201600406

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetra(mu-cyano)-(mu-pyrazine)-iron-di-gold]Experimental 3D Coordinates
researchProduct