0000000001299682

AUTHOR

Wei Jiang

showing 62 related works from this author

Cover Picture: Achieving Strong Positive Cooperativity through Activating Weak Non‐Covalent Interactions (Angew. Chem. Int. Ed. 3/2018)

2018

chemistry.chemical_classificationchemistryStereochemistrySupramolecular chemistryCooperative bindingNon-covalent interactionsCover (algebra)CooperativityGeneral ChemistrySelf-assemblyHost–guest chemistryCatalysisAngewandte Chemie International Edition
researchProduct

Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H⋅⋅⋅π interactions

2018

Abstract Molecular recognition of aromatic hydrocarbons by four endo -functionalized molecular tubes has been studied by 1 H NMR spectroscopy, computational methods, and single crystal X-ray crystallography. The binding selectivity is rationalized by invoking shape complementarity and dipole alignment. The non-covalent interactions are proved to predominantly be C/N-H⋅⋅⋅ π interactions.

chemistry.chemical_classificationhydrogen bond010405 organic chemistryHydrogen bondStereochemistrySupramolecular chemistryGeneral Chemistry010402 general chemistry01 natural sciencesmolecular dynamics0104 chemical sciencesMolecular recognitionmacrocycleschemistryhydrogenProton NMRhost-guest chemistryaromatic hydrocarbonhydrocarbonsmolecular recognitionAromatic hydrocarbonSpectroscopyHost–guest chemistryta116Binding selectivityChinese Chemical Letters
researchProduct

A conformationally adaptive macrocycle : conformational complexity and host–guest chemistry of zorb[4]arene

2018

Large amplitude conformational change is one of the features of biomolecular recognition and is also the basis for allosteric effects and signal transduction in functional biological systems. However, synthetic receptors with controllable conformational changes are rare. In this article, we present a thorough study on the host–guest chemistry of a conformationally adaptive macrocycle, namely per-O-ethoxyzorb[4]arene (ZB4). Similar to per-O-ethoxyoxatub[4]arene, ZB4 is capable of accommodating a wide range of organic cations. However, ZB4 does not show large amplitude conformational responses to the electronic substituents on the guests. Instead of a linear free-energy relationship, ZB4 foll…

Conformational changeAllosteric regulationSupramolecular chemistryCrystal structure010402 general chemistry01 natural sciencesHeat capacityFull Research Papersupramolecular chemistrylcsh:QD241-441lcsh:Organic chemistryComputational chemistrysupramolekulaarinen kemiahost-guest chemistryhost–guest chemistrylcsh:ScienceHost–guest chemistryta116010405 organic chemistryChemistryComponent (thermodynamics)Hydrogen bondOrganic Chemistryzorb[4]arene0104 chemical sciencesChemistrymacrocyclesconformationslcsh:QBeilstein Journal of Organic Chemistry
researchProduct

Titelbild: Achieving Strong Positive Cooperativity through Activating Weak Non‐Covalent Interactions (Angew. Chem. 3/2018)

2017

chemistry.chemical_classificationchemistry010405 organic chemistryStereochemistryCooperative bindingNon-covalent interactionsGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

endo-Functionalized molecular tubes : selective encapsulation of neutral molecules in non-polar media

2016

Four endo-functionalized molecular tubes with urea/thiourea groups in the deep cavities have been synthesized, and their binding ability to neutral molecules studied. Very high binding affinity and selectivity have been achieved, which are rationalized by invoking the shape and electrostatic complementarity and dipole alignment.

Stereochemistrynon-polar media010402 general chemistryPhotochemistry01 natural sciencesCatalysischemistry.chemical_compoundMaterials Chemistryendo-Functionalized molecular tubesneutral moleculesMoleculeta116010405 organic chemistryMetals and AlloysGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDipoleBinding abilityThioureachemistryCeramics and CompositesUreaencapsulationNon polarSelectivityChemical Communications
researchProduct

The on-orbit calibration of DArk Matter Particle Explorer

2019

Abstract The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures used by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA…

Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayScintillator01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesNeutron detectionDark MatterInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsCalorimeter (particle physics)010308 nuclear & particles physicsDetectorSettore FIS/01 - Fisica SperimentaleGamma rayAstronomyAstronomy and AstrophysicsCosmic RaysSouth Atlantic AnomalyHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Search for gamma-ray spectral lines with the DArk Matter Particle Explorer

2021

The DArk Matter Particle Explorer (DAMPE) is well suitable for searching for monochromatic and sharp $\gamma$-ray structures in the GeV$-$TeV range thanks to its unprecedented high energy resolution. In this work, we search for $\gamma$-ray line structures using five years of DAMPE data. To improve the sensitivity, we develop two types of dedicated data sets (including the BgoOnly data which is the first time to be used in the data analysis for the calorimeter-based gamma-ray observatories) and adopt the signal-to-noise ratio optimized regions of interest (ROIs) for different DM density profiles. No line signals or candidates are found between 10 and 300 GeV in the Galaxy. The constraints o…

High Energy Astrophysical Phenomena (astro-ph.HE)Line-like structureHigh Energy Physics - Experiment (hep-ex)MultidisciplinaryAstrophysics::High Energy Astrophysical PhenomenaDAMPE Dark matter Gamma-ray Line-like structureSettore FIS/01 - Fisica SperimentaleDAMPEDark matterFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaGamma-rayHigh Energy Physics - ExperimentScience Bulletin
researchProduct

Probing the guest-binding preference of three structurally similar and conformationally adaptive macrocycles.

2019

A hybrid macrocycle was synthesized by combining the repeat units in oxatub[4]arene and zorb[4]arene, and its recognition behavior and conformational analysis were studied. Three structurally similar and conformationally adaptive macrocycles show different guest-binding selectivities and preferences even in a complex mixture containing three macrocycles and three guests.

010405 organic chemistryChemistryStereochemistryMetals and AlloysGeneral Chemistry010402 general chemistry01 natural sciencesCatalysisPreference0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMaterials ChemistryCeramics and CompositesChemical communications (Cambridge, England)
researchProduct

Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons

2017

High energy cosmic ray electrons plus positrons (CREs), which lose energy quickly during their propagation, provide an ideal probe of Galactic high-energy processes and may enable the observation of phenomena such as dark-matter particle annihilation or decay. The CRE spectrum has been directly measured up to $\sim 2$ TeV in previous balloon- or space-borne experiments, and indirectly up to $\sim 5$ TeV by ground-based Cherenkov $\gamma$-ray telescope arrays. Evidence for a spectral break in the TeV energy range has been provided by indirect measurements of H.E.S.S., although the results were qualified by sizeable systematic uncertainties. Here we report a direct measurement of CREs in the …

Astrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayElectron01 natural sciencesdark matterHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Positroncosmic rays0103 physical sciences010303 astronomy & astrophysicsCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicscosmic rays dark matter electrons space experimentsMultidisciplinaryAnnihilation010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleSpectrum (functional analysis)electronsGalaxyHigh Energy Physics - PhenomenologyHigh Energy Physics::Experimentspace experimentsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Selective Recognition of Phenazine by 2,6‐Dibutoxylnaphthalene‐Based Tetralactam Macrocycle

2019

A 2,6‐dibutoxylnaphthalene‐based tetralactam macrocycle was designed and synthesized. This macrocycle shows highly selective recognition to phenazine ‐‐ a well‐known secondary metabolite in bacteria and an emerging disinfection byproduct in drinking water. In contrast, the macrocycle shows no binding to the structurally similar dibenzo‐1,4‐dioxin. It was revealed that hydrogen bonding, π‐π and σ‐π interactions are the major driving forces between phenazine and the new tetralactam macrocycle. A perfect complementarity in electrostatic potential surfaces may explain the high selectivity. In addition, the macrocycle shows fluorescent response to phenazine, demonstrating its potential in fluore…

PAH-yhdisteetchemistry.chemical_compoundchemistrypolyaromatic hydrocarbonPhenazineTetralactam macrocycleGeneral ChemistryCombinatorial chemistryChinese Journal of Chemistry
researchProduct

Effects of side chains of oxatub[4]arene on its conformational interconversion, molecular recognition and macroscopic self-assembly.

2017

A series of oxatub[4]arenes with different alkyl side chains have been synthesized. The conformational interconversion, molecular recognition and macroscopic self-assembly behaviour of oxatub[4]arene derivatives were investigated. The difference in side chains slightly changes the binding affinities, but results in different self-assembly morphologies at the solid state.

StereochemistrySolid-state010402 general chemistry01 natural sciencesCatalysisside chainsoxatubarenesMolecular recognitionMaterials ChemistrySide chainta116makromolekyylitAlkylBinding affinitieschemistry.chemical_classification010405 organic chemistryChemistryMetals and Alloysself-assemblyGeneral Chemistry0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCeramics and CompositesSelf-assemblyaromaattiset hiilivedytChemical communications (Cambridge, England)
researchProduct

Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite

2019

DAMPE satellite has directly measured the cosmic ray proton spectrum from 40 GeV to 100 TeV and revealed a new feature at about 13.6 TeV.

dark matter cosmic rays spaceProtonMilky WayAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic rayAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsKinetic energy01 natural sciences0103 physical sciences010306 general physicsNuclear ExperimentResearch ArticlesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral indexMultidisciplinary010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologySettore FIS/01 - Fisica SperimentaleSciAdv r-articlesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaResearch Article
researchProduct

A supramolecular system that strictly follows the binding mechanism of conformational selection

2020

Induced fit and conformational selection are two dominant binding mechanisms in biology. Although induced fit has been widely accepted by supramolecular chemists, conformational selection is rarely studied with synthetic systems. In the present research, we report a macrocyclic host whose binding mechanism is unambiguously assigned to conformational selection. The kinetic and thermodynamic aspects of this system are studied in great detail. It reveals that the kinetic equation commonly used for conformational selection is strictly followed here. In addition, two mathematical models are developed to determine the association constants of the same guest to the two host conformations. A “confo…

Models Molecularconformational selectionProtein ConformationScienceSupramolecular chemistrybiological systemsGeneral Physics and Astronomy010402 general chemistryLigands01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyBiophysical PhenomenaArticlesupramolecular chemistryMolecular recognitionProtein structureProtein DomainsComputational chemistryHeterocyclic Compoundsmechanisms in biologysupramolekulaarinen kemialcsh:ScienceSelection (genetic algorithm)Multidisciplinary010405 organic chemistryMechanism (biology)QProteinsGeneral ChemistryModels Theoretical0104 chemical sciencesKineticsPhysical chemistryKinetic equationsProteins metabolismsynthetic systemsThermodynamicslcsh:Qmolecular recognitionSupramolecular chemistryProtein Binding
researchProduct

Achieving Strong Positive Cooperativity through Activating Weak Non-Covalent Interactions

2018

Positive cooperativity achieved through activating weak non-covalent interactions is common in biological assemblies but is rarely observed in synthetic complexes. Two new molecular tubes have been synthesized and the syn isomer binds DABCO-based organic cations with high orientational selectivity. Surprisingly, the ternary complex with two hosts and one guest shows a high cooperativity factor (α=580), which is the highest reported for synthetic systems without involving ion-pairing interactions. The X-ray single-crystal structure revealed that the strong positive cooperativity likely originates from eight C-H⋅⋅⋅O hydrogen bonds between the two head-to-head-arranged syn tube molecules. Thes…

chemistry.chemical_classification010405 organic chemistryChemistryHydrogen bondStereochemistrycooperativitySupramolecular chemistrymolecular tubesCooperativityGeneral ChemistryDABCO010402 general chemistryhydorogenchemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundionsMoleculeNon-covalent interactionsmoleculesHost–guest chemistryTernary complexta116Angewandte Chemie International Edition
researchProduct

Comparison of proton shower developments in the BGO calorimeter of the Dark Matter Particle Explorer between GEANT4 and FLUKA simulations

2020

The DArk Matter Particle Explorer (DAMPE) is a satellite-borne detector for high-energy cosmic rays and $\gamma$-rays. To fully understand the detector performance and obtain reliable physical results, extensive simulations of the detector are necessary. The simulations are particularly important for the data analysis of cosmic ray nuclei, which relies closely on the hadronic and nuclear interactions of particles in the detector material. Widely adopted simulation softwares include the GEANT4 and FLUKA, both of which have been implemented for the DAMPE simulation tool. Here we describe the simulation tool of DAMPE and compare the results of proton shower properties in the calorimeter from t…

Physics - Instrumentation and DetectorsProton85Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaHadronDark matterS-General Physics and AstronomyFOS: Physical sciencesCosmic rayNuclear physicsSpectral analysisInstrumentation and Methods for Astrophysics (astro-ph.IM)Monte Carlo simulationPhysicsTp9550Calorimeter (particle physics)96DetectorInstrumentation and Detectors (physics.ins-det)5513Cosmic Rays-n-tParticleHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Abnormal pressure dependence of the phase boundaries in TL/PEO/P(EO-b-DMS) ternary mixtures

2003

The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.

Phase transitionchemistry.chemical_compoundTernary numeral systemEthyleneMaterials scienceEthylene oxidechemistryAtmospheric pressurePhase (matter)Analytical chemistryBinary systemTernary operationPhysical Review B
researchProduct

Redox-Responsive Host–Guest Chemistry of a Flexible Cage with Naphthalene Walls

2020

"Naphthocage", a naphthalene-based organic cage, reveals very strong binding (up to 1010 M-1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C-H···O, C-H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to futur…

Intercalation (chemistry)Cationic polymerizationmacromolecular substancesGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryRedoxCatalysis0104 chemical sciencesDicationchemistry.chemical_compoundColloid and Surface ChemistrychemistryRadical ionPolymer chemistryHost–guest chemistryTetrathiafulvaleneNaphthaleneJournal of the American Chemical Society
researchProduct

Chelate Cooperativity and Spacer Length Effects on the Assembly Thermodynamics and Kinetics of Divalent Pseudorotaxanes

2011

Homo- and heterodivalent crown-ammonium pseudorotaxanes with different spacers connecting the two axle ammonium binding sites have been synthesized and characterized by NMR spectroscopy and ESI mass spectrometry. The homodivalent pseudorotaxanes are investigated with respect to the thermodynamics of divalent binding and to chelate cooperativity. The shortest spacer exhibits a chelate cooperativity much stronger than that of the longer spacers. On the basis of crystal structure, this can be explained by a noninnocent spacer, which contributes to the binding strength in addition to the two binding sites. Already very subtle changes in the spacer length, i.e., the introduction of an additional…

Models Molecularchemistry.chemical_classificationSpectrometry Mass Electrospray IonizationMagnetic Resonance SpectroscopyRotaxanesCooperative bindingThermodynamicsCooperativityGeneral ChemistryCrystal structureNuclear magnetic resonance spectroscopyBiochemistryCatalysisDivalentQuaternary Ammonium CompoundsKineticschemistry.chemical_compoundColloid and Surface ChemistrychemistryIntramolecular forceEffective molarityThermodynamicsMethyleneta116Chelating AgentsJournal of the American Chemical Society
researchProduct

Using 81Kr and Noble Gases to Characterize and Date Groundwater and Brines in the Baltic Artesian Basin on the One-Million-Year Timescale

2017

Analyses for $^{81}$Kr and noble gases on groundwater from the deepest aquifer system of the Baltic Artesian Basin (BAB) were performed to determine groundwater ages and uncover the flow dynamics of the system on a timescale of several hundred thousand years. We find that the system is controlled by mixing of three distinct water masses: Interglacial or recent meteoric water $(\delta^{18}\text{O} \approx -10.4\unicode{x2030})$ with a poorly evolved chemical and noble gas signature, glacial meltwater $(\delta^{18}\text{O} \leq -18\unicode{x2030})$ with elevated noble gas concentrations, and an old, high-salinity brine component $(\delta^{18}\text{O} \geq -4.5\unicode{x2030}, \geq 90 \text{g …

geographyWater massgeography.geographical_feature_category010504 meteorology & atmospheric sciences530 PhysicsGeochemistryFOS: Physical sciencesNoble gasAquifer010502 geochemistry & geophysics01 natural sciencesGeophysics (physics.geo-ph)Physics - GeophysicsGeochemistry and Petrology550 Earth sciences & geologyInterglacialMeteoric waterGlacial periodMeltwaterGeomorphologyGeologyGroundwater0105 earth and related environmental sciences
researchProduct

The DArk Matter Particle Explorer mission

2017

The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $\sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calib…

Physics - Instrumentation and DetectorsSatellite launchesGamma ray observatoriesAstrophysicsGalactic cosmic rays01 natural sciencesCosmologyHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ObservatoryDetectors and Experimental TechniquesCosmic rays dark matter space experiments010303 astronomy & astrophysicsphysics.ins-detSpace science missionsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEAstrophysics::Instrumentation and Methods for AstrophysicsInstrumentation and Detectors (physics.ins-det)CosmologyCosmology Galaxies Gamma rays Tellurium compounds Chinese Academy of Sciences Dark matter particles Explorer missions Galactic cosmic rays Gamma ray observatories Satellite launches Scientific objectives Space science missions Cosmic raysSpace ScienceAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaParticle Physics - ExperimentAstrophysics and AstronomyAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesCosmic raydark matterTellurium compounds0103 physical sciencesCosmic raysInstrumentation and Methods for Astrophysics (astro-ph.IM)010308 nuclear & particles physicshep-exGamma raysAstronomyAstronomy and AstrophysicsGalaxiesChinese academy of sciencesGalaxyScientific objectivesDark matter particlesChinese Academy of SciencesSatellitespace experimentsExplorer missionsastro-ph.IM
researchProduct

A 2,3-dialkoxynaphthalene-based naphthocage

2019

A 2,3-dialkoxynaphthalene-based naphthocage has been synthesized. This naphthocage prefers to bind small organic cations with its low-symmetry conformation, which is in contrast to 2,6-dialkoxynaphthalene-based naphthocages. Self-sorting of these two naphthocages with two structurally similar guests tetramethylammonium and tetraethylammonium was achieved as well. peerReviewed

TetramethylammoniumTetraethylammoniumMetals and AlloyskationitGeneral ChemistryContrast (music)Medicinal chemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryMaterials ChemistryCeramics and Compositessupramolekulaarinen kemia
researchProduct

Directional Shuttling of a Stimuli-Responsive Cone-Like Macrocycle on a Single-State Symmetric Dumbbell Axle

2018

Rotaxane-based molecular shuttles are often operated using low-symmetry axles and changing the states of the binding stations. A molecular shuttle capable of directional shuttling of an acid-responsive cone-like macrocycle on a single-state symmetric dumbbell axle is now presented. The axle contains three binding stations: one symmetric di(quaternary ammonium) station and two nonsymmetric phenyl triazole stations arranged in opposite orientations. Upon addition of an acid, the protonated macrocycle shuttles from the di(quaternary ammonium) station to the phenyl triazole binding station closer to its butyl groups. This directional shuttling presumably originates from charge repulsion and an …

RotaxaneeducationTriazoleProtonation010402 general chemistry01 natural sciencessupramolecular chemistryCatalysischemistry.chemical_compoundbutyl groupssupramolekulaarinen kemiahost-guest chemistryrotaxanemoleculesta116Physicsmolecular machine010405 organic chemistrymolekyylitGeneral MedicineGeneral ChemistryMolecular machine0104 chemical sciencesMechanism (engineering)CrystallographyAxleMolecular shuttlechemistryDumbbellmacrocycleAngewandte Chemie International Edition
researchProduct

Guest-Induced Folding and Self-Assembly of Conformationally Adaptive Macrocycles into Nanosheets and Nanotubes

2017

A conformationally adaptive macrocycle is presented, namely zorb[4]arene, which exists in multiple conformations in the uncomplexed state. The binding cavity of zorb[4]arene is concealed, either due to a collapsed conformation or by self-inclusion. The zorb[4]arene with long alkyl chains manifests itself with surprisingly low melting point and thus exist as an oil at room temperature. Binding of a guest molecule induces the folding and conformational rigidity of zorb[4]arene and leads to well-defined three-dimensional structures, which can further self-assemble into nanosheets or nanotubes upon solvent evaporation, depending on guest molecules and the conformations they can induce.

chemistry.chemical_classificationadaptive macrocyclesnanosheets010405 organic chemistryStereochemistryOrganic ChemistryLow melting pointGeneral Chemistry010402 general chemistry01 natural sciencesCatalysissupramolecular chemistryguest-induced folding0104 chemical sciencesnanotubesFolding (chemistry)Solvent evaporationchemistryMoleculeSelf-assemblyta116AlkylChemistry: A European Journal
researchProduct

Bis-urea macrocycles with a deep cavity.

2015

Two configurational isomers of bis-urea macrocycles have been synthesized, and their neutral molecule recognition was studied by X-ray crystallography and (1)H NMR experiments. Cooperative action between the deep cavity and the urea groups and the influence of dipole alignments on molecular recognition are discussed.

bis-urea macrocyclesChemistryStereochemistryMetals and AlloysStereoisomerismGeneral ChemistrychemistryCatalysisdeep cavitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsDipolechemistry.chemical_compoundMolecular recognitionComputational chemistryMaterials ChemistryCeramics and CompositesProton NMRUreata116molecule recognitionNeutral moleculeChemical communications (Cambridge, England)
researchProduct

Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H⋅⋅⋅π interactions

2018

Molecular recognition of aromatic hydrocarbons by four endo-functionalized molecular tubes has been studied by 1H NMR spectroscopy, computational methods, and single crystal X-ray crystallography. The binding selectivity is rationalized by invoking shape complementarity and dipole alignment. The non-covalent interactions are proved to predominantly be C/N-H⋅⋅⋅π interactions. peerReviewed

hydrogen bondmacrocyclesvetyhost-guest chemistryaromatic hydrocarbonmolekyylidynamiikkamolecular recognitionhiilivedyt
researchProduct

Bis-urea macrocycles with a deep cavity

2015

bis-urea macrocycleskemiamolecule recognitiondeep cavity
researchProduct

Redox-Responsive Host-Guest Chemistry of a Flexible Cage with Naphthalene Walls

2020

“Naphthocage”, a naphthalene-based organic cage, reveals very strong binding (up to 1010 M–1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C–H···O, C–H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to futur…

aromatic compundsaromaattiset yhdisteethapetusredox reactionskationitpelkistysmacromolecular substanceshydrocarbonshapetus-pelkistysreaktiooxidation cationsredox-reaktiohiilivedyt
researchProduct

CCDC 1913149: Experimental Crystal Structure Determination

2019

Related Article: Hongxin Chai, Zhi-Sheng Pan, Liu-Pan Yang, Shan He, Fangfang Pan, Kari Rissanen, Wei Jiang|2019|Chem.Commun.|55|7768|doi:10.1039/C9CC03341F

Space GroupCrystallography613303749505152-octabutoxy-3162740-tetraoxanonacyclo[40.6.2.21825.0510.0914.01924.02934.03338.04348]dopentaconta-1(49)579111318(52)19(24)202225(51)293133353742(50)43(48)4446-icosaene 14-bis[(4-tert-butylphenyl)methyl]-14-diazabicyclo[2.2.2]octane-14-di-ium bis(hexafluorophosphate) acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417789: Experimental Crystal Structure Determination

2015

Related Article: Guobao Huang, Zhenfeng He, Chen-Xi Cai, Fangfang Pan, Dingqiao Yang, Kari Rissanen, Wei Jiang|2015|Chem.Commun.|51|15490|doi:10.1039/C5CC06768E

Space GroupCrystallographyCrystal SystemCrystal Structuresyn-10183846-Tetra-n-butoxy-30545860-tetraoxa-13154143-tetra-azatridecacyclo[47.7.1.1355.12529.12731.027.0611.01722.02126.03439.03559.04550.05357]hexaconta-246810171921232531(59)323436384547495153(57)-icosaene-1442-dione acetonitrile dichloromethane solvate dihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1577841: Experimental Crystal Structure Determination

2018

Related Article: Yan-Long Ma, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|709|doi:10.1002/anie.201711077

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters10163642-tetrabutoxy-132839505456-hexaoxatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)30323436414345(53)4648-icosaene dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1575263: Experimental Crystal Structure Determination

2018

Related Article: Yan-Long Ma, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|709|doi:10.1002/anie.201711077

Space GroupCrystallographyCrystal System[2]-(11'-(pentane-15-diyl)bis(14-diazabicyclo[2.2.2]octan-1-ium))-(10163642-tetrabutoxy-132839505456-hexaoxatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)30323436414345(53)4648-icosaene)-rotaxane bis(hexafluorophosphate) acetonitrile solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1577176: Experimental Crystal Structure Determination

2017

Related Article: Liu-Pan Yang, Fei Jia, Fangfang Pan, Zhi-Sheng Pan, Kari Rissanen, Wei Jiang|2017|Chem.Commun.|53|12572|doi:10.1039/C7CC07630D

Space GroupCrystallographyCrystal System613192632394552-octabutoxy-3162942-tetraoxanonacyclo[46.4.0.0510.0914.01823.02227.03136.03540.04449]dopentaconta-1(52)57911131820222426313335373944464850-icosaeneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 853183: Experimental Crystal Structure Determination

2012

Related Article: Wei Jiang, K.Nowosinski, N.L.Low, E.V.Dzyuba, F.Klautzsch, A.Schafer, J.Huuskonen, K.Rissanen, C.A.Schalley|2012|J.Am.Chem.Soc.|134|1860|doi:10.1021/ja2107096

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN'-(ethane-12-diylbis(oxy-41-phenylenemethylene))bis(phenylmethanaminium) bis(hexafluorophosphate) 1746-dipropyl-7810111314202123242627363739404243495052535556-tetracosahydroquinoxalino[2'''3''':14''15''][1471013161922]octaoxacyclotetracosino[2''3'':6'7']anthra[2'3':1415][1471013161922]octaoxacyclotetracosino[23-b]quinoxaline acetonitrile chloroform solvate monohydrateExperimental 3D Coordinates
researchProduct

CCDC 1443004: Experimental Crystal Structure Determination

2016

Related Article: Guobao Huang, Arto Valkonen, Kari Rissanen, Wei Jiang|2016|Chem.Commun.|52|9078|doi:10.1039/C6CC00349D

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters10183846-Tetra-n-butoxy-30545860-tetraoxa-13154143-tetra-azatridecacyclo[47.7.1.1355.12529.12731.027.0611.01722.02126.03439.03559.04550.05357]hexaconta-246810171921232531(59)32343638454749(57)5052-icosaene-1442-dithione acetonitrile chloroform solvateExperimental 3D Coordinates
researchProduct

A conformationally adaptive macrocycle: conformational complexity and host–guest chemistry of zorb[4]arene

2023

Large amplitude conformational change is one of the features of biomolecular recognition and is also the basis for allosteric effects and signal transduction in functional biological systems. However, synthetic receptors with controllable conformational changes are rare. In this article, we present a thorough study on the host–guest chemistry of a conformationally adaptive macrocycle, namely per-O-ethoxyzorb[4]arene (ZB4). Similar to per-O-ethoxyoxatub[4]arene, ZB4 is capable of accommodating a wide range of organic cations. However, ZB4 does not show large amplitude conformational responses to the electronic substituents on the guests. Instead of a linear free-energy relationship, ZB4 foll…

researchProduct

CCDC 1957981: Experimental Crystal Structure Determination

2020

Related Article: Fei Jia, Hendrik V. Schröder, Liu-Pan Yang, Carolina von Essen, Sebastian Sobottka, Biprajit Sarkar, Kari Rissanen, Wei Jiang, Christoph A. Schalley|2020|J.Am.Chem.Soc.|142|3306|doi:10.1021/jacs.9b11685

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-dimethyl-44'-bipyridin-1-ium 81529364754-hexabutoxy-22123425960-hexaethyl-51826394457-hexaoxadecacyclo[20.20.16.1341.12024.0712.01116.02833.03237.04651.05055]hexaconta-13(59)7911131520(60)21232830323436414648505254-henicosaene bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

Bis-urea macrocycles with a deep cavity

2023

Two bis-urea macrocycles with a deep cavity demonstrate an enzyme-like binding, and the influence of dipole alignments on molecular recognition.

researchProduct

CCDC 1532334: Experimental Crystal Structure Determination

2017

Related Article: Guo-Bao Huang, Wei-Er Liu, Arto Valkonen, Huan Yao, Kari Rissanen, Wei Jiang|2018|Chin.Chem.Lett.|29|91|doi:10.1016/j.cclet.2017.07.005

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters10183846-tetrabutoxy-30545860-tetraoxa-13154143-tetra-azatridecacyclo[47.7.1.1355.12529.12731.027.0611.01722.02126.03439.03559.04550.05357]hexaconta-246810171921232531(59)32343638454749(57)5052-icosaene-1442-dione 26-dibutoxyanthracene hydrateExperimental 3D Coordinates
researchProduct

CCDC 1575262: Experimental Crystal Structure Determination

2018

Related Article: Yan-Long Ma, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|709|doi:10.1002/anie.201711077

Space GroupCrystallography[3]-(11'-(decane-110-diyl)bis(14-diazabicyclo[2.2.2]octan-1-ium))-bis(10163642-tetrabutoxy-132839505456-hexaoxatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)30323436414345(53)4648-icosaene)-rotaxane bis(hexafluorophosphate) 12-dichloroethane acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417790: Experimental Crystal Structure Determination

2015

Related Article: Guobao Huang, Zhenfeng He, Chen-Xi Cai, Fangfang Pan, Dingqiao Yang, Kari Rissanen, Wei Jiang|2015|Chem.Commun.|51|15490|doi:10.1039/C5CC06768E

Space GroupCrystallographyanti-10183846-Tetra-n-butoxy-30545860-tetraoxa-13154143-tetra-azatridecacyclo[47.7.1.1355.12529.12731.027.0611.01722.02126.03439.03559.04550.05357]hexaconta-246810171921232531(59)323436384547495153(57)-icosaene-1442-dione acetonitrile chloroform 14-dioxane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Achieving Strong Positive Cooperativity through Activating Weak Non‐Covalent Interactions

2023

researchProduct

endo-Functionalized molecular tubes: selective encapsulation of neutral molecules in non-polar media

2023

Four endo-functionalized molecular tubes show high binding affinity and selectivity to neutral molecules.

researchProduct

CCDC 1826426: Experimental Crystal Structure Determination

2018

Related Article: Jie‐Shun Cui, Qian‐Kai Ba, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|7809|doi:10.1002/anie.201803349

Space GroupCrystallography[2]-(N1-((35-di-t-butylphenyl)methyl)-N6-((4-(1-((35-di-t-butylphenyl)methyl)-1H-123-triazol-4-yl)phenyl)methyl)-N1N1N6N6-tetramethylhexane-16-diaminium)-(10163642-tetrabutoxy-28505456-tetraoxa-1339-diazoniatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)30323436414345(53)4648-icosaene)-rotaxane trifluoroacetate tris(hexafluorophosphate) acetone methanol dichloromethane solvate monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1918923: Experimental Crystal Structure Determination

2020

Related Article: Li‐Li Wang, Yi‐Kuan Tu, Arto Valkonen, Kari Rissanen, Wei Jiang|2019|Chin.J.Chem.|37|892|doi:10.1002/cjoc.201900233

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters6132734-tetrabutoxy-3162437-tetraazaheptacyclo[37.3.1.11822.0510.0914.02631.03035]tetratetraconta-1(43)579111318(44)192126283032343941-hexadecaene-2172338-tetrone acetone solvate tetrahydrateExperimental 3D Coordinates
researchProduct

CCDC 1838266: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(45)5(52)681012(51)16(50)17192123(49)27(48)28303234(47)38(46)394143-icosaeneExperimental 3D Coordinates
researchProduct

CCDC 1913150: Experimental Crystal Structure Determination

2019

Related Article: Hongxin Chai, Zhi-Sheng Pan, Liu-Pan Yang, Shan He, Fangfang Pan, Kari Rissanen, Wei Jiang|2019|Chem.Commun.|55|7768|doi:10.1039/C9CC03341F

Space GroupCrystallography613303749505152-octabutoxy-3162740-tetraoxanonacyclo[40.6.2.21825.0510.0914.01924.02934.03338.04348]dopentaconta-1(49)579111318202224293133353742(50)43(48)444651-icosaene 11'-bis(cyclohexylmethyl)-44'-bipyridin-1-ium bis(hexafluorophosphate) acetonitrile solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1950443: Experimental Crystal Structure Determination

2021

Related Article: Liu-Pan Yang, Li Zhang, Mao Quan, Jas S. Ward, Yan-Long Ma, Hang Zhou, Kari Rissanen, Wei Jiang|2020|Nat.Commun.|11|2740|doi:10.1038/s41467-020-16534-9

613192632394552-octabutoxy-3162942-tetraazanonacyclo[46.4.0.0510.0914.01823.02227.03136.03540.04449]dopentaconta-1(52)57911131820222426313335373944464850-icosaene-2172843-tetrone 14-dinitrobenzeneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417788: Experimental Crystal Structure Determination

2015

Related Article: Guobao Huang, Zhenfeng He, Chen-Xi Cai, Fangfang Pan, Dingqiao Yang, Kari Rissanen, Wei Jiang|2015|Chem.Commun.|51|15490|doi:10.1039/C5CC06768E

Space GroupCrystallographyCrystal Systemanti-10183846-Tetra-n-butoxy-30545860-tetraoxa-13154143-tetra-azatridecacyclo[47.7.1.1355.12529.12731.027.0611.01722.02126.03439.03559.04550.05357]hexaconta-246810171921232531(59)323436384547495153(57)-icosaene-1442-dione acetonitrile dichloromethane solvate dihydrateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1836247: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(44)57911161820222729313338404245474951-icosaene bis(4-chlorobenzyl)dimethylammonium hexafluorophosphate
researchProduct

CCDC 1836509: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(44)57911161820222729313338404245474951-icosaene bis(4-nitrobenzyl)dimethylammonium hexafluorophosphateExperimental 3D Coordinates
researchProduct

CCDC 1828064: Experimental Crystal Structure Determination

2018

Related Article: Jie‐Shun Cui, Qian‐Kai Ba, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|7809|doi:10.1002/anie.201803349

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters10163642-tetrabutoxy-28505456-tetraoxa-1339-diazatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)30323436414345(53)4648-icosaeneExperimental 3D Coordinates
researchProduct

CCDC 1577842: Experimental Crystal Structure Determination

2018

Related Article: Yan-Long Ma, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|709|doi:10.1002/anie.201711077

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters10163642-tetrabutoxy-132839505456-hexaoxatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)30323436414345(53)4648-icosaeneExperimental 3D Coordinates
researchProduct

CCDC 1482002: Experimental Crystal Structure Determination

2017

Related Article: Liu-Pan Yang, Fei Jia, Qing-Hai Zhou, Fangfang Pan, Jiao-Nan Sun, Kari Rissanen, Lung Wa Chung, Wei Jiang|2017|Chem.-Eur.J.|23|1516|doi:10.1002/chem.201605701

Space GroupCrystallographyCrystal SystemCrystal Structuretetraethylammonium 4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(45)5(52)6(11)7912(51)16(50)17(22)182023(49)27(48)28(33)293134(47)38(46)39(44)4042-icosaene hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838268: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(44)57911161820222729313338404245474951-icosaene bis(4-t-butylbenzyl)dimethylammonium hexafluorophosphate dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 1482001: Experimental Crystal Structure Determination

2017

Related Article: Liu-Pan Yang, Fei Jia, Qing-Hai Zhou, Fangfang Pan, Jiao-Nan Sun, Kari Rissanen, Lung Wa Chung, Wei Jiang|2017|Chem.-Eur.J.|23|1516|doi:10.1002/chem.201605701

Space GroupCrystallographyCrystal SystemCrystal StructureN-benzyl-NN-dimethylphenylmethanaminium 4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(45)5(52)6(11)7912(51)16(50)17(22)182023(49)27(48)28(33)293134(47)38(46)39(44)4042-icosaene hexafluorophosphateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1417791: Experimental Crystal Structure Determination

2015

Related Article: Guobao Huang, Zhenfeng He, Chen-Xi Cai, Fangfang Pan, Dingqiao Yang, Kari Rissanen, Wei Jiang|2015|Chem.Commun.|51|15490|doi:10.1039/C5CC06768E

Space GroupCrystallographyCrystal Systemsyn-10183846-Tetra-n-butoxy-30545860-tetraoxa-13154143-tetra-azatridecacyclo[47.7.1.1355.12529.12731.027.0611.01722.02126.03439.03559.04550.05357]hexaconta-246810171921232531(59)323436384547495153(57)-icosaene-1442-dione acetonitrile dichloromethane 14-dioxane solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1971100: Experimental Crystal Structure Determination

2019

Related Article: Song-Bo Lu, Hongxin Chai, Jas S. Ward, Mao Quan, Jin Zhang, Kari Rissanen, Ray Luo, Liu-Pan Yang, Wei Jiang|2020|Chem.Commun.|56|888|doi:10.1039/C9CC09585C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterstetraethylammonium 21921385558-hexaethyl-535456575960-hexapropoxy-51624354051-hexaoxadecacyclo[18.18.14.2714.22633.24249.1337.11822.0813.02732.04348]hexaconta-13(55)7(60)8(13)91114(59)18(58)192126(57)27293133(56)3742(54)43454749(53)-henicosaene hexafluorophosphate unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1826427: Experimental Crystal Structure Determination

2018

Related Article: Jie‐Shun Cui, Qian‐Kai Ba, Hua Ke, Arto Valkonen, Kari Rissanen, Wei Jiang|2018|Angew.Chem.,Int.Ed.|57|7809|doi:10.1002/anie.201803349

Space GroupCrystallography10163642-tetrabutoxy-28505456-tetraoxa-1339-diazatridecacyclo[43.7.1.1351.12327.12529.027.0611.01520.01924.03237.03355.04146.04953]hexapentaconta-246810151719212329(55)303234364143454749(53)-icosaene dichloromethane solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838267: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(45)5(52)681012(51)16(50)17192123(49)27(48)28303234(47)38(46)394143-icosaene cobaltocenium hexafluorophosphate
researchProduct

CCDC 1838270: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographybis(4-iodobenzyl)dimethylammonium hexafluorophosphateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1913148: Experimental Crystal Structure Determination

2019

Related Article: Hongxin Chai, Zhi-Sheng Pan, Liu-Pan Yang, Shan He, Fangfang Pan, Kari Rissanen, Wei Jiang|2019|Chem.Commun.|55|7768|doi:10.1039/C9CC03341F

613303749505152-octabutoxy-3162740-tetraoxanonacyclo[40.6.2.21825.0510.0914.01924.02934.03338.04348]dopentaconta-1(49)579111318202224293133353742(50)43454751-icosaene dimethylbis(4-t-butylbenzyl)ammonium hexafluorophosphateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1838269: Experimental Crystal Structure Determination

2018

Related Article: Liu-Pan Yang, Song-Bo Lu, Arto Valkonen, Fangfang Pan, Kari Rissanen, Wei Jiang|2018|Beilstein J.Org.Chem.|14|1570|doi:10.3762/bjoc.14.134

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters4546474849505152-octabutoxy-3142536-tetraoxanonacyclo[36.6.2.2512.21623.22734.0611.01722.02833.03944]dopentaconta-1(44)57911161820222729313338404245474951-icosaene bis(4-iodobenzyl)dimethylammonium hexafluorophosphateExperimental 3D Coordinates
researchProduct