0000000001299914
AUTHOR
William Clegg
Titelbild: Direct CH Metalation with Chromium(II) and Iron(II): Transition-Metal Host / Benzenediide Guest Magnetic Inverse-Crown Complexes (Angew. Chem. 18/2009)
Chrom und Eisen als die neuesten Erganzungen des Konzepts der alkalimetallvermittelten Metallierung stellen J. Klett, R. E. Mulvey et al. in ihrer Zuschrift auf S. 3367 ff. vor. Das elektropositivere Natrium ist wesentlich fur die Reaktion, doch das weniger elektropositive Chrom oder Eisen ist es, das Benzol tatsachlich deprotoniert. Diese neuartige Reaktivitat kann mit einem Schachspiel verglichen werden, bei dem die Konigin (Na) dem Konig Schach bietet und der Springer (Cr, Fe) Matt setzt.
Bis[(trimethylsilyl)methyl]manganese: Structural Variations of Its Solvent-Free and TMEDA-, Pyridine-, and Dioxane-Complexed Forms
First synthesized in 1976 and recently taking on a new significance as a key precursor to heterobimetallic alkali-metal-manganese(II) complexes, bis[(trimethylsilyl)methyl] manganese has been structurally characterized by X-ray crystallography. It forms a polymeric chain structure of formula [{Mn(CH2SiMe3)(2)}(infinity)], 1, in which distorted tetrahedral, spiro Mn atoms are linked together via mu(2)-bonding alkyl ligands. The structure is notable for displaying two distinct categories of Mn-C bond lengths with a mean size differential of 0.225 angstrom and for being the first fully crystallographically characterized polymeric manganese(II) dialkyl compound. Magnetic measurements of 1 indic…
Sodium-mediated manganation: direct mono- and dimanganation of benzene and synthesis of a transition-metal inverse-crown complex.
Inside out approach: Twofold deprotonation of benzene by a sodium monoalkyl bisamido manganate(II) reagent derived from BuNa, 2,2,6,6-tetramethylpiperidine, and Mn(CH2SiMe3)2 has produced the first inverse-crown complex in which the transition-metal atoms are incorporated in the host (see X-ray structure, blue N, green Na, purple Mn). Variable-temperature magnetization measurements show that the complex is antiferromagnetic.
Substitution of the laser borane anti-B18H22 with pyridine: a structural and photophysical study of some unusually structured macropolyhedral boron hydrides
Reaction of anti-B18H221 with pyridine in neutral solvents gives sparingly soluble B16H18-3',8'-Py23a as the major product (ca. 53%) and B18H20-6',9'-Py22 (ca. 15%) as the minor product, with small quantities of B18H20-8'-Py 4 (ca. 1%) also being formed. The three new compounds 2, 3a and 4 are characterized by single-crystal X-ray diffraction analyses and by multinuclear multiple-resonance NMR spectroscopy. Compound 2 is of ten-vertex nido:ten-vertex arachno two-atoms-in-common architecture, long postulated for a species with borons-only cluster constitution, but previously elusive. Compound 3a is of unprecedented ten-vertex nido:eight-vertex arachno two-atoms-in-common architecture. The si…
Synthesis and characterization of chiral phosphirane derivatives of [(μ-H)4Ru4(CO)12] and their application in the hydrogenation of an α,β-unsaturated carboxylic acid
Abstract Ruthenium clusters containing the chiral binaphthyl-derived mono-phosphiranes [(S)-([1,1′-binaphthalen]-2-yl)phosphirane] (S)-1a, [(R)-(2′-methoxy-1,1′-binaphthyl-2-yl)phosphirane] (R)-1b, and the diphosphirane [2,2′-di(phosphiran-1-yl)-1,1′-binaphthalene] (S)-1c have been synthesized and characterized. The clusters are [(μ-H)4Ru4(CO)11((S)-1a)] (S)-2, [(μ-H)4Ru4(CO)11((R)-1b)] (R)-3, 1,1-[(μ-H)4Ru4(CO)10((S)-1c)] (S)-4, [(μ-H)4Ru4(CO)11((S)-binaphthyl-P(s)(H)Et)] (S,Sp)-5, [(μ-H)4Ru4(CO)11((S)-binaphthyl-P(R)(H)Et)] (S,Rp)-6, [(μ-H)4Ru4(CO)11((R)-binaphthyl-P(s)(H)Et)] (R,Sp)-7, [(μ-H)4Ru4(CO)11((R)-binaphthyl-P(R)(H)Et)] (R,Rp)-8 and the phosphinidene-capped triruthenium cluster …
A stable oxoverdazyl free radical: Structural and magnetic characterization
Abstract The structure and magnetic properties (susceptibility and ESR) of the stable oxoverdazyl free radical 6-(4-acetamidophenyl)-1,4,5,6-tetrahydro-2,4-dimethyl-1,2,4,5-tetrazin-3(2H)-one are presented. The crystal structure consists of chains of parallel planar molecules running along the b-axis. These chains are formed by dimers with a ring-over-bond overlap and a significant offset between dimers, although with similar inter- and intradimer distances. The susceptibility measurements show that this compound is an S = 1/2 paramagnet with weak antiferromagnetic interactions. The magnetic susceptibility can be very well reproduced with an antiferromagnetic regular chain model with g = 2.…
Tuning the Basicity of Synergic Bimetallic Reagents: Switching the Regioselectivity of the Direct Dimetalation of Toluene from 2,5‐ to 3,5‐Positions
Meta-meta metalation: Remarkably, toluene can be directly dimanganated or dimagnesiated at the 3,5-positions using bimetallic bases with active Me3SiCH2 ligands (see scheme, blue). In contrast, n-butyl ligands lead to 2,5-metalation (red). tmp=2,2,6,6-tetramethylpiperidide.
Assessing the reactivity of sodium alkyl-magnesiates towards quinoxaline : single electron transfer (SET) vs. nucleophilic alkylation processes
By exploring the reactivity of sodium butyl-magnesiate (1) supported by the bulky chelating silyl(bisamido) ligand {Ph2Si(NAr*)2}(2-) (Ar* = 2,6-iPr2-C6H3) towards Quinoxaline (Qx), the ability of this bimetallic system to effectively promote SET processes has been disclosed. Thus 1 executes the single-electron reduction of Qx affording complex (2) whose structure in the solid state contains two quinaxolyl radical anions Qx˙ stabilised within a dimeric magnesiate framework. Combining multinuclear NMR and EPR measurements with DFT calculations, new insights into the constitution of 2 in solution and its magnetic behaviour have been gained. Further evidence on the SET reactivity of 1 was foun…
A Series of Ultra-Efficient Blue Borane Fluorophores
13 pags., 14 figs., 5 tabs.
Preparation, reactivity and tautomeric preferences of novel (1H-quinolin-2-ylidene)propan-2-ones
1,1-Difluoro-3-(1H-quinolin-2-ylidene)propan-2-one 1a, 1,1,1-trifluoro-3-(1H-quinolin-2-ylidene)propan-2-one 1b, 1,1,1-trifluoro-3-(4-chloro-1H-quinolin-2-ylidene)propan-2-one 1c and 1,3-dibromo-1,1-difluoro-3-(2-quinolyl)propan-2-one 2 are prepared and characterized by various spectroscopic techniques. The crystal structure of 1a is determined by X-ray diffraction. Furthermore, a series of previously known non-halogenated (1H-quinolin-2-ylidene)propan-2-ones 1d-1h are oxidized with AgBrO3 in the presence of AlCl3. In all cases, 2-(1-bromo-1-chloromethyl)quinoline 3 is obtained in high yield. The bromination order and sites of 1a are analyzed based on ab initio MP2 and DFT calculations for …
Sodium Congener of the Classical Lithium Methylchromate Dimer: Synthetic, X-ray Crystallographic, and Magnetic Studies of Me8Cr2[Na(OEt2)]4
One of the milestone structures in the development of transition-metal complexes with metal metal bonds of multiple bond order was the lithium methylchromate dimer Me8Cr2[Li(donor)](4) (donor = THF or Et2O). Using a simple salt metathesis reaction mixing this compound with sodium tert-butoxide, the sodium congener Me8Cr2-[Na(OEt2)]4 has been synthesized as a green crystalline compound and isolated in 51% yield. Its solid-state structure was determined by single-crystal X-ray diffraction. Exhibiting exact crystallographic C-4h symmetry, this heavier alkali-metal chromate structure is also dimeric, formally comprising a (Me8Cr4)(4-) tetranionic core with four peripheral Na+ cations carrying s…
Cover Picture: Direct CH Metalation with Chromium(II) and Iron(II): Transition-Metal Host / Benzenediide Guest Magnetic Inverse-Crown Complexes (Angew. Chem. Int. Ed. 18/2009)
Chromation and ferration are the latest additions to the concept of alkali-metal-mediated metalation, as described by J. Klett, R. E. Mulvey, and co-workers in their Communication on page 3317 ff. While the more electropositive sodium is essential for the reaction, it is the less electropositive chromium or iron that actually performs deprotonation of benzene. This novel reactivity can be likened to a game of chess in which the queen (Na) holds the king in check, while the knight (Cr, Fe) scores checkm(etal)ate.
Direct C-H metalation with chromium(ii) and iron(ii): transition- metal host/benzenediide guest magnetic inverse-crown complexes
Check M(etal)ate: The chessboard and the figures represent a special reaction in which different low-polarity metals can metalate arenes directly when they are brought into the right position. In a combination of queen (sodium) and knight (chromium or iron), it is possible for the knight (usually the weaker piece) to make a direct deadly hit on the king (benzene) in this game of elemental chess. Fil: Alborés, Pablo. Johannes Gutenberg Universitat Mainz; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Carrella, Luca M.. Johannes Gutenberg Universitat Mainz; Alemania Fil: Clegg, William. University of Newcastle; Reino Unido Fil: García Álvarez, Pablo. Univ…
Future directions in solid state chemistry: report of the NSF-sponsored workshop
Abstract A long-established area of scientific excellence in Europe, solid state chemistry has emerged in the US in the past two decades as a field experiencing rapid growth and development. At its core, it is an interdisciplinary melding of chemistry, physics, engineering, and materials science, as it focuses on the design, synthesis and structural characterization of new chemical compounds and characterization of their physical properties. As a consequence of this inherently interdisciplinary character, the solid state chemistry community is highly open to the influx of new ideas and directions. The inclusionary character of the field’s culture has been a significant factor in its continu…
Structural and Magnetic Insights into the Trinuclear Ferrocenophane and Unexpected Hydrido Inverse Crown Products of Alkali‐Metal‐Mediated Manganation(II) of Ferrocene
With the aim of introducing the diisopropylamide [NiPr(2)](-) ligand to alkali-metal-mediated manganation (AMMMn) chemistry, the temperature-dependent reactions of a 1:1:3 mixture of butylsodium, bis(trimethylsilylmethyl)manganese(II), and diisopropylamine with ferrocene in hexane/toluene have been investigated. Performed at reflux temperature, the reaction affords the surprising, ferrocene-free, hydrido product [Na(2)Mn(2) (mu-H)(2){N(iPr)(2)}(4)]2 toluene (1), the first Mn hydrido inverse crown complex. Repeating the reaction rationally, excluding ferrocene, produces 1 in an isolated crystalline yield of 62 %. At lower temperatures, the same bimetallic amide mixture leads to the manganati…
CCDC 1431264: Experimental Crystal Structure Determination
Related Article: Zoe Livingstone, Alberto Hernán-Gómez, Sharon E. Baillie, David R. Armstrong, Luca M. Carrella, William Clegg, Ross W. Harrington, Alan R. Kennedy, Eva Rentschler, Eva Hevia|2016|Dalton Trans.|45|6175|doi:10.1039/C5DT04044B
CCDC 1441506: Experimental Crystal Structure Determination
Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B
CCDC 2009109: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 2009108: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 921188: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 2009112: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 2009113: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 1531251: Experimental Crystal Structure Determination
Related Article: Ahmed F. Abdel-Magied, Maitham H. Majeed, Manuel F. Abelairas-Edesa, Arne Ficks, Radwa M. Ashour, Ahibur Rahaman, William Clegg, Matti Haukka, Lee J. Higham, Ebbe Nordlander|2017|J.Organomet.Chem.|849-850|71|doi:10.1016/j.jorganchem.2017.05.031
CCDC 921191: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1431266: Experimental Crystal Structure Determination
Related Article: Zoe Livingstone, Alberto Hernán-Gómez, Sharon E. Baillie, David R. Armstrong, Luca M. Carrella, William Clegg, Ross W. Harrington, Alan R. Kennedy, Eva Rentschler, Eva Hevia|2016|Dalton Trans.|45|6175|doi:10.1039/C5DT04044B
CCDC 2009110: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 1441507: Experimental Crystal Structure Determination
Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B
CCDC 921190: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 2009106: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 1431263: Experimental Crystal Structure Determination
Related Article: Zoe Livingstone, Alberto Hernán-Gómez, Sharon E. Baillie, David R. Armstrong, Luca M. Carrella, William Clegg, Ross W. Harrington, Alan R. Kennedy, Eva Rentschler, Eva Hevia|2016|Dalton Trans.|45|6175|doi:10.1039/C5DT04044B
CCDC 921189: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 2009105: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 2009107: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 921187: Experimental Crystal Structure Determination
Related Article: Pilar Amo-Ochoa, Simone S. Alexandre, Samira Hribesh, Miguel A. Galindo, Oscar Castillo, Carlos J. Gómez-García, Andrew R. Pike, José M. Soler, Andrew Houlton, Ross W. Harrington, William Clegg, Félix Zamora|2013|Inorg.Chem.|52|5290|doi:10.1021/ic400237h
CCDC 1441504: Experimental Crystal Structure Determination
Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B
CCDC 1531250: Experimental Crystal Structure Determination
Related Article: Ahmed F. Abdel-Magied, Maitham H. Majeed, Manuel F. Abelairas-Edesa, Arne Ficks, Radwa M. Ashour, Ahibur Rahaman, William Clegg, Matti Haukka, Lee J. Higham, Ebbe Nordlander|2017|J.Organomet.Chem.|849-850|71|doi:10.1016/j.jorganchem.2017.05.031
CCDC 2009111: Experimental Crystal Structure Determination
Related Article: Jonathan Bould, Kamil Lang, Kaplan Kirakci, Luis Cerdán, Daniel Roca-Sanjuán, Antonio Francés-Monerris, William Clegg, Paul G. Waddell, Marcel Fuciman, Tomáš Polívka, Michael G. S. Londesborough|2020|Inorg.Chem.|59|17058|doi:10.1021/acs.inorgchem.0c02277
CCDC 1431265: Experimental Crystal Structure Determination
Related Article: Zoe Livingstone, Alberto Hernán-Gómez, Sharon E. Baillie, David R. Armstrong, Luca M. Carrella, William Clegg, Ross W. Harrington, Alan R. Kennedy, Eva Rentschler, Eva Hevia|2016|Dalton Trans.|45|6175|doi:10.1039/C5DT04044B
CCDC 1531252: Experimental Crystal Structure Determination
Related Article: Ahmed F. Abdel-Magied, Maitham H. Majeed, Manuel F. Abelairas-Edesa, Arne Ficks, Radwa M. Ashour, Ahibur Rahaman, William Clegg, Matti Haukka, Lee J. Higham, Ebbe Nordlander|2017|J.Organomet.Chem.|849-850|71|doi:10.1016/j.jorganchem.2017.05.031
CCDC 1441505: Experimental Crystal Structure Determination
Related Article: Michael G. S. Londesborough, Jiří Dolanský, Tomáš Jelínek, John D. Kennedy, Ivana Císařová, Robert D. Kennedy, Daniel Roca-Sanjuán, Antonio Francés-Monerris, Kamil Lang, William Clegg|2018|Dalton Trans.|47|1709|doi:10.1039/C7DT03823B