0000000001302424
AUTHOR
Manuel Souto
Breathing-Dependent Redox Activity in a Tetrathiafulvalene-Based Metal–Organic Framework
"Breathing" metal-organic frameworks (MOFs) that involve changes in their structural and physical properties upon an external stimulus are an interesting class of crystalline materials due to their range of potential applications including chemical sensors. The addition of redox activity opens up a new pathway for multifunctional "breathing" frameworks. Herein, we report the continuous breathing behavior of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, showing a reversible swelling (up to ca. 40% of the volume cell) upon solvent adsorption. Importantly, the planarity of the TTF linkers is influenced by the breathing behavior of the MOF, directly impacting on its electrochemical proper…
A highly stable and hierarchical tetrathiafulvalene-based metal organic framework with improved performance as a solid catalyst
[EN] Herein we report the synthesis of a tetrathiafulvalene (TTF)-based MOF, namely MUV-2, which shows a non-interpenetrated hierarchical crystal structure with mesoporous one-dimensional channels of ca. 3 nm and orthogonal microporous channels of ca. 1 nm. This highly stable MOF (aqueous solution with pH values ranging from 2 to 11 and different organic solvents), which possesses the well-known [Fe3(¿3-O)(COO)6] secondary building unit, has proven to be an efficient catalyst for the aerobic oxidation of dibenzothiophenes.
Investigation of Charge-Transfer Interactions Induced by Encapsulating Fullerene in a Mesoporous Tetrathiafulvalene-Based Metal-Organic Framework
<p>The design of Metal-Organic Frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to install additional electrical functionalities within the framework while maintaining porosity. In this direction, understanding the charge-transfer (CT) process between the framework and the guest molecules is crucial towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C<sub>60</sub>) in a mesoporous tetrathiafulvalene(TTF)-based MOF. The CT process between the electron-acceptor C<sub>60 </sub>guest and the electron-donor TTF ligand is studied in detail by means…
Electronic, Structural and Functional Versatility in Tetrathiafulvalene-Lanthanide Metal-Organic Frameworks
<div>Tetrathiafulvalene-Lanthanide (TTF-Ln) Metal-Organic Frameworks (MOFs) are an interesting class of multifunctional materials in which porosity can be combined with electronic properties such as electrical conductivity, redox activity, luminescence and magnetism. Herein we report a new family of isostructural TTF-Ln MOFs, denoted as <b>MUV-5(Ln)</b> (Ln = Gd, Tb, Dy, Ho, Er), exhibiting semiconducting properties as a consequence of the short intermolecular S···S contacts established along the chain direction between partially oxidised TTF moieties. In addition, this family shows photoluminescence properties and single-molecule magnetic behaviour, finding near-infrared …
Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu 2 O nanoparticles for CO 2 methanation
<div>Here we show for the first time a MOF that is photocatalytically</div><div>active for the light-assisted CO<sub>2</sub> methanation at mild conditions</div><div>(215 °C) without the inclusion of metallic nanoparticles or any</div><div>sacrificial agent. The presence of Cu<sub>2</sub>O nanoparticles causes a 50 % increase in the photocatalytic activity. These results pave the way to developping efficient and cost-effective materials for CO<sub>2</sub> elimination.</div>
Interpenetrated Luminescent Metal-Organic Frameworks based on 1H-Indazole-5-carboxylic Acid
Herein we report the formation and characterization of two novel Zn-based multifunctional metal-organic frameworks (MOFs) based on 1H-indazole-5-carboxylic acid and bipyridine-like linkers, synthesized by soft solvothermal routes. These materials possess isoreticular 2-fold interpenetrated three-dimensional structures that afford a flexible character and allow porosity modulation of the MOFs as confirmed by CO2 sorption measurements. Apart from this attractive structural feature, the MOFs exhibit fascinating luminescent properties involving both luminescence thermometry and long-lasting phosphorescence.
Role of the Open-Shell Character on the Pressure-Induced Conductivity of an Organic Donor-Acceptor Radical Dyad
Single‐component conductors based on neutral organic radicals have received a lot of attention due to the possibility that the unpaired electron can serve as a charge carrier without the need of a previous doping process. Although most of these systems are based on delocalized planar radicals, we present here a nonplanar and spin localized radical based on a tetrathiafulvalene (TTF) moiety, linked to a perchlorotriphenylmethyl (PTM) radical by a conjugated bridge, which exhibits a semiconducting behavior upon application of high pressure. The synthesis, electronic properties, and crystal structure of this neutral radical TTF‐Ph‐PTM derivative (1) are reported and implications of its crystal…
Influence of interpenetration on the flexibility of MUV-2
<p>The crystal structure of an interpenetrated tetrathiafulvalene(TTF)- based metal-organic framework (MOF) is reported. This MOF, denoted MUV-2-i, is the interpenetrated analogue of the hierarchical and flexible MUV-2. Interestingly, the large flexibility exhibited by MUV-2 upon polar solvent adsorption is considerably reduced in the interpenetrated form which can be explained by short S···S interactions between adjacent TTF-based ligands ensuring more rigidity to the framework. In addition, porosity of MUV-2-i significantly decreased in comparison to MUV-2 as shown by the reduced free volume in the crystal structure.</p>
Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework
The design of metal–organic frameworks (MOFs) incorporating electroactive guest molecules in the pores has become a subject of great interest in order to obtain additional electrical functionalities within the framework while maintaining porosity. Understanding the charge-transfer (CT) process between the framework and the guest molecules is a crucial step towards the design of new electroactive MOFs. Herein, we present the encapsulation of fullerenes (C60) in a mesoporous tetrathiafulvalene (TTF)-based MOF. The CT process between the electron-acceptor C60 guest and the electron-donor TTF ligand is studied in detail by means of different spectroscopic techniques and density functional theor…
Hexakis-adducts of [60]fullerene as molecular scaffolds of polynuclear spin-crossover molecules
A family of hexakis-substituted [60]fullerene adducts endowed with the well-known tridentate 2,6-bis(pyrazol-1-yl)pyridine (bpp) ligand for spin-crossover (SCO) systems has been designed and synthesized. It has been experimentally and theoretically demonstrated that these molecular scaffolds are able to form polynuclear SCO complexes in solution. UV-vis and fluorescence spectroscopy studies have allowed monitoring of the formation of up to six Fe(ii)–bpp SCO complexes. In addition, DFT calculations have been performed to model the different complexation environments and simulate their electronic properties. The complexes retain SCO properties in the solid state exhibiting both thermal- and …
Tetrathiafulvalene-Polychlorotriphenylmethyl Dyads: Influence of Bridge and Open-Shell Characteristics on Linear and Nonlinear Optical Properties
Three conjugated donor-π-acceptor radical systems (1 a–1 c) were prepared by bridging a tetrathiafulvalene (TTF) electron-donor unit to a polychlorotriphenylmethyl (PTM) electron-acceptor radical through vinylene units of different lengths. The dependence of the intramolecular charge transfer on the length of the conjugated bridge has been analyzed by different electrochemical and spectroscopic techniques. Linear optical properties and the second-order nonlinear optical (NLO) response of these derivatives have been computed by comparing systems 1 a–1 c with the non-radical analogues (2 a–2 c). Interestingly, an enhanced NLO response is predicted for dyads 1 a–1 c with PTM in the radical for…
Reversible switching of the Au(111) work function by near infrared irradiation with a bistable SAM based on a radical donor–acceptor dyad
We describe the modification of the work function (WF) of Au(111) upon deposition of self-assembled monolayers (SAMs) with two donor–acceptor (D–A) systems, one based on a ferrocene-polychlorotriphenylmethyl radical (Fc–PTM) dyad and another on its non-radical dyad analogue. Kelvin Probe Force Microscopy (KPFM) has been used to measure the changes in the Contact Potential Difference (CPD) between the tip and the SAM under application of a cycling sweep of direct current (DC) voltage bias. These measurements showed that both SAMs exhibit a hysteretic behaviour in their WF changes. Interestingly, the hysteresis loop of the radical SAM is notably reduced when irradiated with NIR light, which w…
CCDC 1830490: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Jorge Romero, Joaquín Calbo, Inigo J. Vitorica-Yrezabal, Jose L Zafra, Juan Casado Cordón, Enrique Ortí, Aron Walsh, Guillermo Minguez Espallargas|2018|J.Am.Chem.Soc.|140|10562|doi:10.1021/jacs.8b05890
CCDC 1942013: Experimental Crystal Structure Determination
Related Article: Antonio A. Garcı́a-Valdivia, Manuel Pérez-Mendoza, Duane Choquesillo-Lazarte, Javier Cepeda, Belén Fernández, Manuel Souto, Marcos González-Tejero, Jose A. Garcı́a, Guillermo Mı́nguez Espallargas, Antonio Rodrı́guez-Diéguez|2020|Cryst.Growth Des.|20|4550|doi:10.1021/acs.cgd.0c00345
CCDC 1934948: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1817871: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Maria Chiara Gullo, HengBo Cui, Nicola Casati, Fabio Montisci, Harald O. Jeschke, Roser Valentí, Imma Ratera, Concepció Rovira, Jaume Veciana|2018|Chem.-Eur.J.|24|5500|doi:10.1002/chem.201800881
CCDC 1916087: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1579606: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Andrea Santiago-Portillo, Miguel Palomino, Iñigo J. Vitórica-Yrezábal, Bruno J. C. Vieira, João C. Waerenborgh, Susana Valencia, Sergio Navalón, Fernando Rey, Hermenegildo García, Guillermo Mínguez Espallargas|2018|Chemical Science|9|2413|doi:10.1039/C7SC04829G
CCDC 1830488: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Jorge Romero, Joaquín Calbo, Inigo J. Vitorica-Yrezabal, Jose L Zafra, Juan Casado Cordón, Enrique Ortí, Aron Walsh, Guillermo Minguez Espallargas|2018|J.Am.Chem.Soc.|140|10562|doi:10.1021/jacs.8b05890
CCDC 1830489: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Jorge Romero, Joaquín Calbo, Inigo J. Vitorica-Yrezabal, Jose L Zafra, Juan Casado Cordón, Enrique Ortí, Aron Walsh, Guillermo Minguez Espallargas|2018|J.Am.Chem.Soc.|140|10562|doi:10.1021/jacs.8b05890
CCDC 1817872: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Maria Chiara Gullo, HengBo Cui, Nicola Casati, Fabio Montisci, Harald O. Jeschke, Roser Valentí, Imma Ratera, Concepció Rovira, Jaume Veciana|2018|Chem.-Eur.J.|24|5500|doi:10.1002/chem.201800881
CCDC 1916085: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1916082: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1897432: Experimental Crystal Structure Determination
Related Article: María Vicent-Morales, Iñigo J. Vitórica-Yrezábal, Manuel Souto, Guillermo Mínguez Espallargas|2019|CrystEngComm|21|3031|doi:10.1039/C9CE00233B
CCDC 1934950: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1942014: Experimental Crystal Structure Determination
Related Article: Antonio A. Garcı́a-Valdivia, Manuel Pérez-Mendoza, Duane Choquesillo-Lazarte, Javier Cepeda, Belén Fernández, Manuel Souto, Marcos González-Tejero, Jose A. Garcı́a, Guillermo Mı́nguez Espallargas, Antonio Rodrı́guez-Diéguez|2020|Cryst.Growth Des.|20|4550|doi:10.1021/acs.cgd.0c00345
CCDC 1853491: Experimental Crystal Structure Determination
Related Article: Manuel Souto, Jorge Romero, Joaquín Calbo, Inigo J. Vitorica-Yrezabal, Jose L Zafra, Juan Casado Cordón, Enrique Ortí, Aron Walsh, Guillermo Minguez Espallargas|2018|J.Am.Chem.Soc.|140|10562|doi:10.1021/jacs.8b05890
CCDC 1934947: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1934945: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1934949: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1934946: Experimental Crystal Structure Determination
Related Article: Javier Castells-Gil, Samuel Mañas-Valero, Iñigo J. Vitórica-Yrezábal, Duarte Ananias, João Rocha, Raul Santiago, Stefan T. Bromley, José J. Baldoví, Eugenio Coronado, Manuel Souto, Guillermo Mínguez Espallargas|2019|Chem.-Eur.J.|25|12636|doi:10.1002/chem.201902855
CCDC 1916084: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1916086: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A
CCDC 1916083: Experimental Crystal Structure Determination
Related Article: María Cabrero-Antonino, Sonia Remiro-Buenamañana, Manuel Souto, Antonio A. García-Valdivia, Duane Choquesillo-Lazarte, Sergio Navalón, Antonio Rodríguez-Diéguez, Guillermo Mínguez Espallargas, Hermenegildo García|2019|Chem.Commun.|55|10932|doi:10.1039/C9CC04446A