0000000001305032
AUTHOR
Lotta Turunen
Tetraiodoethynyl resorcinarene cavitands as multivalent halogen bond donors
The first examples of iodoethynyl resorcinarene cavitands as rigid 3D halogen bond (XB) donor molecules are presented. These concave macrocycles form strong, RXB = 0.78–0.83, halogen bonds with dioxane oxygen, pyridine nitrogen and a bromide anion in tetraproropyl ammonium bromide resulting in deep cavity cavitand structures.
Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages
Tripodal N-donor ligands are used to form halogen-bonded assemblies via structurally analogous Ag+-complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N∙∙∙I+∙∙∙N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1-methyl-1-azonia-4-azabicyclo[2.2.2]octane)-mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5-tris(imidazole-1-ylmethyl)-2,4,6-trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N∙∙∙Ag+∙∙∙N] → [N∙∙∙I+∙∙∙N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepar…
Surprising solvent-induced structural rearrangements in large [N⋯I+⋯N] halogen-bonded supramolecular capsules
Coordinative halogen bonds have recently gained interest for the assembly of supramolecular capsules. Ion mobility-mass spectrometry and theoretical calculations now reveal the well-defined gas-phase structures of dimeric and hexameric [N...I+...N] halogen-bonded capsules with counterions located inside their cavities as guests. The solution reactivity of the large hexameric capsule shows the intriguing solvent-dependent equilibrium between the hexamer and an unprecedented pentameric [N...I+...N] halogen-bonded capsule, when the solvent is changed from chloroform to dichloromethane. The intrinsic flexibility of the cavitands enables this novel structure to adopt a pseudo-trigonal bipyramida…
Nano-sized I12L6 Molecular Capsules Based on the [N⋅⋅⋅I+⋅⋅⋅N] Halogen Bond
Summary Self-assembly of pre-organized subunits with a concave overall shape is an effective strategy for the synthesis of supramolecular capsules. We report the synthesis of a cavitand-based hexameric capsule held together solely by 12 robust [N⋅⋅⋅I + ⋅⋅⋅N] halogen bonds and its characterization in solution and in the gas phase via 1 H NMR spectroscopy, diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY), and electrospray ionization mass spectrometry. The [N⋅⋅⋅I + ⋅⋅⋅N] halogen-bonded hexameric capsule was efficiently synthesized from the isolobal metallosupramolecular Ag + capsule by application of the [N⋅⋅⋅Ag + ⋅⋅⋅N] → [N⋅⋅⋅I + ⋅⋅⋅N] cation-exchange reaction.
Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique
Open in a separate window Three-dimensional selective laser sintering printing was utilized to produce porous, solid objects, in which the catalytically active component, Pd/SiO2, is attached to an easily printable supporting polypropylene framework. Physical properties of the printed objects, such as porosity, were controlled by varying the printing parameters. Structural characterization of the objects was performed by helium ion microscopy, scanning electron microscopy, and X-ray tomography, and the catalytic performance of the objects was tested in the hydrogenation of styrene, cyclohexene, and phenylacetylene. The results show that the selective laser sintering process provides an alte…
Host-guest complexes of C-propyl-2-bromoresorcinarene with aromatic N-oxides*
The host-guest complexes of C-propyl-2-bromoresorcinarene with pyridine N-oxide, 3-methylpyridine N-oxide, quinoline N-oxide and isoquinoline N-oxide are studied using single crystal X-ray crystallography and 1H NMR spectroscopy. The C-propyl-2-bromoresorcinarene forms endo-complexes with the aromatic N-oxides in the solid-state when crystallised from either methanol or acetone. In solution, the endo-complexes were observed only in methanol-d4. In DMSO the solvent itself is a good guest, and crystallisation provides only solvate endo-complexes. The C-propyl-2-bromoresorcinarene shows remarkable flexibility when crystallised from either methanol or acetone, and packs into one-dimensional sel…
Assembling Halogen-Bonded Capsules via Cation Exchange
Dr. Lotta Turunen is currently a postdoctoral researcher within Acad. Prof. Kari Rissanen's research group at the University of Jyvaskyla in Finland. Under his supervision, she obtained her MSc in organic chemistry and completed her PhD in chemistry in late September 2017. Her research focused on designing, synthesizing, and characterizing halogen-bonded supramolecular assemblies, capsules, and cages.
Design and construction of halogen-bonded capsules and cages
This thesis describes the design, synthesis and characterization of supramolecular halogen-bonded capsules and cages from multivalent ligands. In the first part of the thesis, an overview to halogen bonding is provided. After discussing the general features of the halogen bonding, the most frequently used halogen bond donors are introduced and examples of their utilization in halogen-bonded systems are discussed. The chapter also presents recent advances made in the field of halogen-bonded supramolecular capsules. The first part of the thesis also includes a review of halogen-bonded complexes involving halonium ions, and a brief introduction to [N···X+···N] halogen bonds is provided along w…
[N⋅⋅⋅I+⋅⋅⋅N] Halogen-Bonded Dimeric Capsules from Tetrakis(3-pyridyl)ethylene Cavitands
Two [N⋅⋅⋅I+⋅⋅⋅N] halogen-bonded dimeric capsules using tetrakis(3-pyridyl)ethylene cavitands with different lower rim alkyl chains are synthesized and analyzed in solution and the gas phase. These first examples of symmetrical dimeric capsules making use of the iodonium ion (I+) as the main connecting module are characterized by 1H NMR spectroscopy, diffusion ordered NMR spectroscopy (DOSY), electrospray ionization mass spectrometry (ESI-MS), and ion mobility-mass spectrometry (TW-IMS) experiments. The synthesis and effective halogen-bonded dimerization proceeds through analogous dimeric capsules with [N⋅⋅⋅Ag+⋅⋅⋅N] binding motifs as the intermediates as evidenced by the X-ray structures of …
Self-Complementary Dimers of Oxalamide-Functionalized Resorcinarene Tetrabenzoxazines
Self‐complementarity is a useful concept in supramolecular chemistry, molecular biology and polymeric systems. Two resorcinarene tetrabenzoxazines decorated with four oxalamide groups were synthesized and characterized. The oxalamide groups possessed self‐complementary hydrogen bonding sites between the carbonyls and amide groups. The self‐complementary nature of the oxalamide groups resulted in self‐included dimeric assemblies. The hydrogen bonding interactions within the tetrabenzoxazines gave rise to the formation of dimers, which were confirmed by single‐crystal X‐ray diffractions analysis and supported by NMR spectroscopy and mass spectrometry. The self‐included dimers were connected b…
Halogen-bonded solvates of tetrahaloethynyl cavitands
The formation and structures of halogen-bonded solvates of three different tetrahaloethynyl cavitands with acetone, chloroform, acetonitrile, DMF and DMSO were prepared and investigated. The inclusion and host–guest behaviour of the resorcinarene cavitands was found to be highly dependent on the flexibility of the ethylene-bridging unit.
Bamboo-like Chained Cavities and Other Halogen-Bonded Complexes from Tetrahaloethynyl Cavitands with Simple Ditopic Halogen Bond Acceptors
Halogen bonding provides a useful complement to hydrogen bonding and metal-coordination as a tool for organizing supramolecular systems. Resorcinarenes, tetrameric bowl-shaped cavitands, have been previously shown to function as efficient scaffolds for generating dimeric capsules in both solution and solid-phase, and complicated one-, two-, and three-dimensional frameworks in the solid phase. Tetrahaloethynyl resorcinarenes (bromide and iodide) position the halogen atoms in a very promising “crown-like” orientation for acting as organizing halogen-bond donors to help build capsules and higher-order networks. Symmetric divalent halogen bond acceptors including bipyridines, 1,4-dioxane, and 1…
Host-guest complexes of C-propyl-2-bromoresorcinarene with aromatic N-oxides*
The host-guest complexes of C-propyl-2-bromoresorcinarene with pyridine N-oxide, 3-methylpyridine N-oxide, quinoline N-oxide and isoquinoline N-oxide are studied using single crystal X-ray crystallography and 1H NMR spectroscopy. The C-propyl-2-bromoresorcinarene forms endo-complexes with the aromatic N-oxides in the solid-state when crystallised from either methanol or acetone. In solution, the endo-complexes were observed only in methanol-d4. In DMSO the solvent itself is a good guest, and crystallisation provides only solvate endo-complexes. The C-propyl-2-bromoresorcinarene shows remarkable flexibility when crystallised from either methanol or acetone, and packs into one-dimensional sel…
Tetrameric and Dimeric [N∙∙∙I+∙∙∙N] Halogen-Bonded Supramolecular Cages
Tripodal N‐donor ligands are used to form halogen‐bonded assemblies via structurally analogous Ag+‐complexes. Selective formation of discrete tetrameric I6L4 and dimeric I3L2 halonium cages, wherein multiple [N⋅⋅⋅I+⋅⋅⋅N] halogen bonds are used in concert, can be achieved by using sterically rigidified cationic tris(1‐methyl‐1‐azonia‐4‐azabicyclo[2.2.2]octane)‐mesitylene ligand, L1(PF6)3, and flexible ligand 1,3,5‐tris(imidazole‐1‐ylmethyl)‐2,4,6‐trimethylbenzene, L2, respectively. The iodonium cages, I6L14(PF6)18 and I3L22(PF6)3, were obtained through the [N⋅⋅⋅Ag+⋅⋅⋅N]→ [N⋅⋅⋅I+⋅⋅⋅N] cation exchange reaction between the corresponding Ag6L14(PF6)18 and Ag3L22(PF6)3 coordination cages, prepare…
CCDC 1554863: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655
CCDC 1577820: Experimental Crystal Structure Determination
Related Article: Zoran Džolić, Ngong Kodiah Beyeh, Mario Cetina, Lotta Turunen, Kari Rissanen|2018|Chem.Asian J.|13|164|doi:10.1002/asia.201701426
CCDC 1556027: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1554861: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655
CCDC 1577819: Experimental Crystal Structure Determination
Related Article: Zoran Džolić, Ngong Kodiah Beyeh, Mario Cetina, Lotta Turunen, Kari Rissanen|2018|Chem.Asian J.|13|164|doi:10.1002/asia.201701426
CCDC 1583123: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1583131: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1498390: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Ulrike Warzok, Rakesh Puttreddy, Ngong Kodiah Beyeh, Christoph A. Schalley, Kari Rissanen|2016|Angew.Chem.,Int.Ed.|55|14033|doi:10.1002/anie.201607789
CCDC 1577818: Experimental Crystal Structure Determination
Related Article: Zoran Džolić, Ngong Kodiah Beyeh, Mario Cetina, Lotta Turunen, Kari Rissanen|2018|Chem.Asian J.|13|164|doi:10.1002/asia.201701426
CCDC 1556030: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1583125: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1556033: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1583130: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1583128: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1574172: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, John F. Trant, Robin H. A. Ras, Kari Rissanen|2018|Cryst.Growth Des.|18|513|doi:10.1021/acs.cgd.7b01517
CCDC 1574174: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, John F. Trant, Robin H. A. Ras, Kari Rissanen|2018|Cryst.Growth Des.|18|513|doi:10.1021/acs.cgd.7b01517
CCDC 1556029: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1583127: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1554864: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655
CCDC 1556032: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1574171: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, John F. Trant, Robin H. A. Ras, Kari Rissanen|2018|Cryst.Growth Des.|18|513|doi:10.1021/acs.cgd.7b01517
CCDC 1583124: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1556028: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1583126: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1583122: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1583129: Experimental Crystal Structure Determination
Related Article: Rakesh Puttreddy, Ngong Kodiah Beyeh, Pia Jurcek, Lotta Turunen, John F. Trant, Robin H. A. Ras and Kari Rissanen|2017|Supramol.Catal.|30|445|doi:10.1080/10610278.2017.1414217
CCDC 1556031: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Fangfang Pan, Ngong Kodiah Beyeh, Mario Cetina, John F. Trant, Robin H. A. Ras, Kari Rissanen|2017|CrystEngComm|19|5223|doi:10.1039/C7CE01118K
CCDC 1554862: Experimental Crystal Structure Determination
Related Article: Lotta Turunen, Anssi Peuronen, Samu Forsblom, Elina Kalenius, Manu Lahtinen and Kari Rissanen|2017|Chem.-Eur.J.|23|11714|doi:10.1002/chem.201702655