0000000001305313
AUTHOR
Tobias Wenz
Quantum dot state initialization by control of tunneling rates
We study the loading of electrons into a quantum dot with dynamically controlled tunnel barriers. We introduce a method to measure tunneling rates for individual discrete states and to identify their relaxation paths. Exponential selectivity of the tunnel coupling enables loading into specific quantum dot states by tuning independently energy and rates. While for the single-electron case orbital relaxation leads to fast transition into the ground state, for electron pairs triplet-to-singlet relaxation is suppressed by long spin-flip times. This enables the fast gate-controlled initialization of either a singlet or a triplet electron pair state in a quantum dot with broad potential applicati…
Dopant-controlled single-electron pumping through a metallic island
We investigate a hybrid metallic island/single dopant electron pump based on fully depleted silicon-on-insulator technology. Electron transfer between the central metallic island and the leads is controlled by resonant tunneling through single phosphorus dopants in the barriers. Top gates above the barriers are used to control the resonance conditions. Applying radio frequency signals to the gates, non-adiabatic quantized electron pumping is achieved. A simple deterministic model is presented and confirmed by comparing measurements with simulations.
Dataset for Wenz et al. Phys. Rev. B 99, 201409(R) (2019), "Quantum dot state initialization by control of tunneling rates"
Collection of the datasets used to generate the figures in the following journal paper: "Quantum dot state initialization by control of tunneling rates" Tobias Wenz, Jevgeny Klochan, Frank Hohls, Thomas Gerster, Vyacheslavs Kashcheyevs, and Hans W. Schumacher PHYSICAL REVIEW B 99, 201409(R) (2019) DOI: 10.1103/PhysRevB.99.201409