0000000001305552
AUTHOR
Elmeri Lahtinen
Dry chlorination of spent nickel metal hydride battery waste for water leaching of battery metals and rare earth elements
An efficient leaching process was developed for nickel, cobalt, and the rare earth elements (REEs) from spent nickel metal hydride (NiMH) battery waste. The process involves dry chlorination with ammonium chloride in low temperature to produce water-soluble chlorinated compounds, followed by simple water leaching. The factors affecting the conversion and solubilization were studied, including the amount of ammonium chloride, residence time and temperature in dry chlorination, and solid to liquid ratio, time and temperature in water leaching. As a result, the dry chlorination process was found to produce ammonium and chloride containing products, depending on the temperature of the process: …
Preconcentration and speciation analysis of mercury : 3D printed metal scavenger-based solid-phase extraction followed by analysis with inductively coupled plasma mass spectrometry
A selective method for preconcentration and determination of methylmercury (MeHg) and inorganic mercury (iHg) in natural water samples at the ng L−1 level has been developed. The method involves adsorption of Hg species into a 3D printed metal scavenger and sequential elution with acidic thiourea solutions before ICP-MS determination. Experimental parameters affecting the preconcentration of MeHg and iHg such as the sample matrix, effect of the flow rate on adsorption, eluent composition, and elution mode have been studied in detail. The obtained method detection limits, considering the preconcentration factors of 42 and 93, were found to be 0.05 ng L−1 and 0.08 ng L−1 for MeHg and iHg, res…
Determination of mercury at picogram level in natural waters with inductively coupled plasma mass spectrometry by using 3D printed metal scavengers
The determination of ultra-trace concentrations of Hg in natural water samples via preconcentration using 3D printed metal scavenger technique followed by inductively coupled plasma mass spectrometry (ICP-MS) was developed. The determination of Hg in certified reference material ERM-CA615 (groundwater) was performed with high accuracy and precision resulting in recovery of 100 ± 3% and RSD <2.5%, respectively. Selective laser sintering (SLS) 3D printing was used to fabricate the scavengers using a mixture of polyamide-12 powder with thiol-functionalized silica. The preconcentration procedure is based on the adsorption of Hg on the scavenger and followed by elution of the preconcentrated Hg …
Three-Dimensional Printing of Nonlinear Optical Lenses.
In the current paper, a series of nonlinear optical (NLO) active devices was prepared by utilizing stereolithographic three-dimensional printing technique. Microcrystalline NLO active component, urea, or potassium dihydrogen phosphate was dispersed in a simple photopolymerizable polyacrylate-based resin and used as the printing material to fabricate highly efficient transparent NLO lenses. The nonlinear activity of the printed lenses was confirmed by second-harmonic generation measurements using a femtosecond laser-pumped optical parametric amplifier operating at a wavelength of 1195 nm. The three-dimensional printing provides a simple method to utilize a range of NLO active compounds witho…
Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusion
Abstract In this paper, the ability to 3D print lithium-ion batteries through Pmnbspace thermoplastic material extrusion and polymer powder bed fusion is considered. Focused on the formulation of positive electrodes composed of polypropylene, LiFePO4 as active material, and conductive additives, advantages and drawbacks of both additive manufacturing technologies, are thoroughly discussed from the electrochemical, electrical, morphological and mechanical perspectives. Based on these preliminary results, strategies to further optimize the electrochemical performances are proposed. Through a comprehensive modeling study, the enhanced electrochemical suitability at high current densities of va…
Gold Nanoparticles on 3D-Printed Filters : From Waste to Catalysts
Three-dimensionally printed solid but highly porous polyamide-12 (PA12) plate-like filters were used as selective adsorbents for capturing tetrachloroaurate from acidic solutions and leachates to prepare PA12–Au composite catalysts. The polyamide-adsorbed tetrachloroaurate can be readily reduced to gold nanoparticles by using sodium borohydride, ascorbic acid, hydrogen peroxide, UV light, or by heating. All reduction methods led to polyamide-anchored nanoparticles with an even size distribution and high dispersion. The particle sizes were somewhat dependent on the reduction method, but the average diameters were typically about 20 nm. Particle sizes were determined by using a combination of…
Jalometallit ja niiden talteenotto
Tämän pro gradu -tutkielman kirjallisessa osassa käsitellään jalometallien ominaisuuksia ja esiintyvyyttä. Myös jalometallien yleisimpiä yhdisteitä ja käyttökohteita teollisuudessa selvitetään. Jalometallien talteenottomenetelmistä esitellään varsinkin klassiset saostusmenetelmät, neste-nesteuutto ja ioninvaihto. Näistä painotetaan ioninvaihtomenetelmien esittelyä, sillä tutkielman kokeellisessa osassa tutkittiin jalometallien talteenottoa ioninvaihdolla. Kirjallisessa osassa esitellään myös lyhyesti induktiivisesti kytketyn plasma-emissiospektrometrin (ICP-OES) rakennetta ja käyttöä. Tutkielman kokeellisessa osassa tutkittiin jalometallien talteenottoa synteettisestä uuttoliuoksesta, hyödy…
Selective recovery of gold from electronic waste using 3D-printed scavenger
Around 10% of the worldwide annual production of gold is used for manufacturing of electronic devices. According to the European Commission, waste electric and electronic equipment is the fastest growing waste stream in the European Union. This has generated the need for an effective method to recover gold from electronic waste. Here, we report a simple, effective, and highly selective nylon-12-based three-dimensional (3D)-printed scavenger objects for gold recovery directly from an aqua regia extract of a printed circuit board waste. Using the easy to handle and reusable 3D-printed meshes or columns, gold can be selectively captured both in a batch and continuous flow processes by dipping …
Nonlinear optical properties of diaromatic stilbene, butadiene and thiophene derivatives
Series of highly polar stilbene (1a–e), diphenylbutadiene (2a–c) and phenylethenylthiophene (3a–c) derivatives were prepared via Horner–Wadsworth–Emmons method with a view to produce new and efficient materials for second harmonic generation (SHG) in the solid-state. The single-crystal X-ray structures of compounds 1–3 reveal extensive polymorphism and a peculiar photodimerization of the 2-chloro-3,4-dimethoxy-4′-nitrostilbene derivative 1a to afford two polymorphs of tetra-aryl cyclobutane 4. The stilbene congeners 2-chloro-3,4-dimethoxy-4′-nitrostilbene (1a·non-centro), 5-bromo-2-hydroxy-3-nitro-4′-nitrostilbene (1b) and 4-dimethylamino-4′-nitrostilbene (1e), as well as 4′-fluoro-4′′-nitr…
Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique
Open in a separate window Three-dimensional selective laser sintering printing was utilized to produce porous, solid objects, in which the catalytically active component, Pd/SiO2, is attached to an easily printable supporting polypropylene framework. Physical properties of the printed objects, such as porosity, were controlled by varying the printing parameters. Structural characterization of the objects was performed by helium ion microscopy, scanning electron microscopy, and X-ray tomography, and the catalytic performance of the objects was tested in the hydrogenation of styrene, cyclohexene, and phenylacetylene. The results show that the selective laser sintering process provides an alte…
3D Printed Palladium Catalyst for Suzuki-Miyaura Cross-coupling Reactions
Selective laser sintering (SLS) 3d printing was utilized to manufacture a solid catalyst for Suzuki-Miyaura cross-coupling reactions from polypropylene as a base material and palladium nanoparticles on silica (SilicaCat Pd(0)R815-100 by SiliCycle) as the catalytically active additive. The 3d printed catalyst showed similar activity to that of the pristine powdery commercial catalyst, but with improved practical recoverability and reduced leaching of palladium into solution. Recycling of the printed catalyst led to increase of the induction period of the reactions, attributed to the pseudo-homogeneous catalysis. The reaction is initiated by oxidative addition of aryl iodide to palladium nano…
Porous 3D Printed Scavenger Filters for Selective Recovery of Precious Metals from Electronic Waste
Selective laser sintering (SLS) 3D printing is used to fabricate highly macroporous ion scavenger filters for recovery of Pd and Pt from electronic waste. The scavengers are printed by using a mixture of polypropylene with 10 wt% of type‐1 anion exchange resin. Porosities and the flow‐through properties of the filters are controlled by adjusting the SLS printing parameters. The cylinder‐shaped filters are used in selective recovery of Pd and Pt from acidic leachate of electronic waste simply by passing the solution through the object. Under such conditions, the scavenger filters are able to capture Pd and Pt as anionic complexes with high efficiency from a solution containing mixture of dif…
Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.
Metal‐organic frameworks (MOFs) have raised a lot of interest, especially as adsorbing materials, because of their unique and well‐defined pore structures. One of the main challenges in the utilization of MOFs is their crystalline and powdery nature, which makes their use inconvenient in practice. Three‐dimensional printing has been suggested as a potential solution to overcome this problem. We used selective laser sintering (SLS) to print highly porous flow‐through filters containing the MOF copper(II) benzene‐1,3,5‐tricarboxylate (HKUST‐1). These filters were printed simply by mixing HKUST‐1 with an easily printable nylon‐12 polymer matrix. By using the SLS, powdery particles were fused t…
Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering
Selective laser sintering (SLS) 3D printing was utilized to fabricate highly porous carbonous electrodes. The electrodes were prepared by using a mixture of fine graphite powder and either polyamide-12, polystyrene, or polyurethane polymer powder as SLS printing material. During the printing process the graphite powder was dispersed uniformly on the supporting polymer matrix. Graphite’s concentration in the mixture was varied between 5 and 40 wt % to find the correlation between the carbon content and conductivity. The graphite concentration, polymer matrix, and printing conditions all had an impact on the final conductivity. Due to the SLS printing technique, all the 3D printed electrodes …
Considering lithium-ion battery 3D-printing via thermoplastic material extrusion and polymer powder bed fusion
In this paper, the ability to 3D print lithium-ion batteries through thermoplastic material extrusion and polymer powder bed fusion is considered. Focused on the formulation of positive electrodes composed of polypropylene, LiFePO4 as active material, and conductive additives, advantages and drawbacks of both additive manufacturing technologies, are thoroughly discussed from the electrochemical, electrical, morphological and mechanical perspectives. Based on these preliminary results, strategies to further optimize the electrochemical performances are proposed. Through a comprehensive modeling study, the enhanced electrochemical suitability at high current densities of various complex three…
CCDC 2058508: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058507: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058513: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058519: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058512: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058515: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058511: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058516: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058518: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058509: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058514: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058517: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E
CCDC 2058510: Experimental Crystal Structure Determination
Related Article: Esa Kukkonen, Elmeri Lahtinen, Pasi Myllyperkiö, Matti Haukka, Jari Konu|2021|New J.Chem.|45|6640|doi:10.1039/D1NJ00456E