0000000001306087

AUTHOR

S. Aiello

showing 11 related works from this author

Feasibility and physics potential of detecting $^8$B solar neutrinos at JUNO

2021

The Jiangmen Underground Neutrino Observatory (JUNO) features a 20 kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNO's features make it an excellent location for 8B solar neutrino measurements, such as its low-energy threshold, high energy resolution compared with water Cherenkov detectors, and much larger target mass compared with previous liquid scintillator detectors. In this paper, we present a comprehensive assessment of JUNO's potential for detecting 8B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2 MeV threshold for the recoil electron energy is found to be achievable, assuming that the intrinsic radioactive …

Physics - Instrumentation and Detectorsneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidhigh [energy resolution]01 natural sciences7. Clean energymass [target]High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)JUNO; Neutrino oscillation; Solar neutrinoelastic scattering [neutrino electron]KamLAND[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]flavor [transformation]neutrino oscillationInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsElastic scatteringJUNOliquid [scintillation counter]neutrino oscillation solar neutrino JUNOSettore FIS/01 - Fisica Sperimentaleoscillation [neutrino]Instrumentation and Detectors (physics.ins-det)Monte Carlo [numerical calculations]neutrino electron: elastic scatteringtensionmass difference [neutrino]ddc:nuclear reactor [antineutrino]observatoryHigh Energy Physics - PhenomenologyPhysics::Space Physicsneutrino: flavorsolar [neutrino]target: massNeutrinonumerical calculations: Monte CarloNuclear and High Energy PhysicsParticle physicsNeutrino oscillationmatter: solarCherenkov counter: waterneutrino: mass differenceFOS: Physical sciencesSolar neutrinoNOtransformation: flavoruraniumPE2_20103 physical scienceselectron: recoil: energyantineutrino: nuclear reactorsolar [matter]ddc:530ddc:610Sensitivity (control systems)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsNeutrino oscillationbackground: radioactivityCherenkov radiationAstrophysiquesolar neutrino010308 nuclear & particles physicswater [Cherenkov counter]radioactivity [background]flavor [neutrino]Astronomy and Astrophysicssensitivityneutrino: mixing anglerecoil: energy [electron]energy spectrum [electron]electron: energy spectrumHigh Energy Physics::Experimentsphereneutrino: oscillationenergy resolution: highEnergy (signal processing)mixing angle [neutrino]
researchProduct

Deep sea tests of a prototype of the KM3NeT digital optical module

2014

SIRE(opens in a new window)|View at Publisher| Export | Download | Add to List | More... European Physical Journal C Volume 74, Issue 9, 1 September 2014, 8p Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration (Article) Adrián-Martínez, S.a, Ageron, M.b, Aharonian, F.c, Aiello, S.d, Albert, A.e, Ameli, F.f, Anassontzis, E.G.g, Anghinolfi, M.h, Anton, G.i, Anvar, S.j, Ardid, M.a, de Asmundis, R.k, Balasi, K.l, Band, H.m, Barbarino, G.kn, Barbarito, E.o, Barbato, F.kn, Baret, B.p, Baron, S.p, Belias, A.lq, Berbee, E.m, van den Berg, A.M.r, Berkien, A.m, Bertin, V.b, Beurthey, S.b, van Beveren, V.m, Beverini, N.st, Biagi, S.uv, Bianucci, S.t, Billault, M.b,…

KM3NeT; digital optical modulePhysics - Instrumentation and Detectors[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Physics and Astronomy (miscellaneous)TELESCOPEPhysics::Instrumentation and Detectorsdigital optical moduleFOS: Physical sciencesNeutrino Telescopesneutrino astrophysics; Cherenkov detector; Neutrino TelescopesKM3NeT; Cherenkov; UnderwaterDESIGNCherenkov[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Instrumentation and Methods for Astrophysics (astro-ph.IM)KM3NeTEngineering (miscellaneous)Astrophysics::Instrumentation and Methods for Astrophysicsneutrino telescopeDATA-ACQUISITIONInstrumentation and Detectors (physics.ins-det)READOUTneutrino astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]NEUTRINOSUnderwaterAstrophysics - Instrumentation and Methods for AstrophysicsSYSTEMCherenkov detector
researchProduct

Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector

2021

To maximize the light yield of the liquid scintillator (LS) for the Jiangmen Underground Neutrino Observatory (JUNO), a 20 t LS sample was produced in a pilot plant at Daya Bay. The optical properties of the new LS in various compositions were studied by replacing the gadolinium-loaded LS in one antineutrino detector. The concentrations of the fluor, PPO, and the wavelength shifter, bis-MSB, were increased in 12 steps from 0.5 g/L and <0.01 mg/L to 4 g/L and 13 mg/L, respectively. The numbers of total detected photoelectrons suggest that, with the optically purified solvent, the bis-MSB concentration does not need to be more than 4 mg/L. To bridge the one order of magnitude in the detect…

organic compounds: admixtureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsLiquid scintillatorscintillation counter: liquidAnalytical chemistryFOS: Physical sciencesmodel: opticalScintillatorWavelength shifterantineutrino: detector01 natural sciencesNOHigh Energy Physics - Experimentwavelength shifterHigh Energy Physics - Experiment (hep-ex)PE2_2Daya BayNeutrino0103 physical sciencesfluorine: admixture[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530neutrino oscillation[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentationJiangmen Underground Neutrino ObservatoryPhysicsJUNO010308 nuclear & particles physicsSettore FIS/01 - Fisica SperimentaleDetectorLight yield; Liquid scintillator; NeutrinoInstrumentation and Detectors (physics.ins-det)Yield (chemistry)Scintillation counterComposition (visual arts)photon: yieldNeutrinoLight yieldNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Onset of nuclear vaporization inAu197+197Au collisions

1993

Multifragmentation has been measured for [sup 197]Au+[sup 197]Au collisions at [ital E]/[ital A]=100, 250, and 400 MeV. The mean fragment multiplicity increases monotonically with the charged particle multiplicity at [ital E]/[ital A]=100 MeV, but decreases for central collisions with incident energy, consistent with the onset of nuclear vaporization. Molecular dynamics calculations follow some trends but underpredict the observed fragment multiplicities. Including the statistical decay of excited residues improves the agreement for peripheral collisions but worsens it for central collisions.

PhysicsNuclear physicsNuclear reactionComputer Science::Information RetrievalExcited stateVaporizationGeneral Physics and AstronomyIncident energyMultiplicity (mathematics)Nuclear ExperimentCharged particlePhysical Review Letters
researchProduct

INDAGINE SPERIMENTALE SU ELEMENTI IN VETRO STRUTTURALE COMPRESSI

2011

Several experimental investigations in the past few years have highlighted the fact that the compressive strength of glass was significantly higher than its tensile strength, allowing new applications of glass in compression members. However, due to the high slenderness of structural glass elements made of thin glass panels, they tend to fail in a brittle manner. A substantial amount of fundamental research has been carried out in the past few years to investigate the stability behaviour of structural glass elements. However, although buckling of glass panels has been quite well studied, a very poor amount of research has been addressed to glass columns, which by contrast represent the most…

Vetro strutturale Lastre Colonne Compressione Instabilità
researchProduct

Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration

2014

The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40…

PhysicsPhotomultiplierPhotonPhysics and Astronomy (miscellaneous)010308 nuclear & particles physicsbusiness.industryPhysics::Instrumentation and DetectorsDetectorAstrophysics::Instrumentation and Methods for Astrophysics01 natural sciencesSignalPhotocathodeOpticsKM3NeT0103 physical sciences14. Life underwaterSensitivity (control systems)010306 general physicsbusinessEngineering (miscellaneous); Physics and Astronomy (miscellaneous)Engineering (miscellaneous)Cherenkov radiation
researchProduct

Dust Envelope in Young Supernova Remnants

1974

As stated by Hoyle and Wickramasinghe (1970), hereafter referred to as HW, a significant fraction of the mass ejected by exploding supernovae may condense into solid particles during the expansion phase following explosion. Hence, observable effects on supernova light curves are to be expected.

PhysicsSupernovaCrab NebulaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsAstronomyObservableAstrophysicsExpansion phaseNear-Earth supernovaLight curveEnvelope (waves)Luminosity
researchProduct

Synthesis and structure-activity relationship studies of new 3-methyl-5-(5-propyl-1H-1-R'-3-pyrazolyl)-1H-1-R-4-nitrosopyrazoles as antimicotic agents

2015

We have reported that some 4-nitrosopyrazoles derivatives displayed in vitro and in vivo potent antifungal activity at no cytotoxic concentration and some of these compounds were 4 times more potent than Amphotericine B and Fluconazole respectively against Cryptococcus.Neoformans and C. Krusei.We reported also that the absence of NO group or its replacement with NO2 or NH2 groups gave compounds devoid of antimycotical activity. To better understand the mechanism of action and with the aim of identifying the chemical features responsible for the action, we synthesized and tested a new class of compounds in which the 4-NO group was replaced with 4-CN group having, these last, similar steric a…

antifungal agents nytrosopirazoles
researchProduct

CCDC 160805: Experimental Crystal Structure Determination

2001

Related Article: E.Aiello, S.Aiello, F.Mingoia, A.Bacchi, G.Pelizzi, C.Musiu, M.G.Setzu, A.Pani, P.La Colla, M.E.Marongiu|2000|Bioorg.Med.Chem.|8|2719|doi:10.1016/S0968-0896(00)00211-X

3-(5-Methyl-4-nitroso-1-propyl-1H-3-pyrazolyl)-5-methylisoxazoleSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 160804: Experimental Crystal Structure Determination

2001

Related Article: E.Aiello, S.Aiello, F.Mingoia, A.Bacchi, G.Pelizzi, C.Musiu, M.G.Setzu, A.Pani, P.La Colla, M.E.Marongiu|2000|Bioorg.Med.Chem.|8|2719|doi:10.1016/S0968-0896(00)00211-X

Space GroupCrystallography3-(3-Methyl-4-nitroso-1-propyl-1H-5-pyrazolyl)-5-methylisoxazoleCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 236010: Experimental Crystal Structure Determination

2005

Related Article: E.Saniger, M.Diaz-Gavilan, B.Delgado, D.Choquesillo, J.M.Gonzalez-Perez, S.Aiello, M.A.Gallo, A.Espinosa, J.M.Campos|2004|Tetrahedron|60|11453|doi:10.1016/j.tet.2004.09.077

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(RS)-1-(7-Methoxy-23-dihydro-5H-14-benzodioxepin-3-yl)-5-fluorouracilExperimental 3D Coordinates
researchProduct