0000000001311094
AUTHOR
Jean-michel Hatt
Dental wear proxy correlation in a long-term feeding experiment on sheep ( Ovis aries )
Dietary reconstruction in vertebrates often relies on dental wear-based proxies. Although these proxies are widely applied, the contributions of physical and mechanical processes leading to meso- and microwear are still unclear. We tested their correlation using sheep ( Ovis aries , n = 39) fed diets of varying abrasiveness for 17 months as a model. Volumetric crown tissue loss, mesowear change and dental microwear texture analysis (DMTA) were all applied to the same teeth. We hereby correlate: (i) 46 DMTA parameters with each other, for the maxillary molars (M1, M2, M3), and the second mandibular molar (m2); (ii) 10 mesowear variables to each other and to DMTA for M1, M2, M3 and m2; and (…
Species-specific enamel differences in hardness and abrasion resistance between the permanent incisors of cattle (Bos primigenius taurus) and the ever-growing incisors of nutria (Myocastor coypus).
Hypselodont (ever-growing) teeth of lagomorphs or rodents have higher wear rates (of a magnitude of mm/week), with compensating growth rates, compared to the non-ever-growing teeth of ungulates (with a magnitude of mm/year). Whether this is due to a fundamental difference in enamel hardness has not been investigated so far. We prepared enamel samples (n = 120 per species) from incisors of cattle (Bos primigenius taurus) and nutria (Myocastor coypus, hypselodont incisors) taken at slaughterhouses, and submitted them to indentation hardness testing. Subsequently, samples were split into 4 groups per species (n = 24 per species and group) that were assessed for abrasion susceptibility by a sta…
Root growth compensates for molar wear in adult goats (Capra aegagrus hircus)
One reason for the mammalian clade’s success is the evolutionary diversity of their teeth. In herbivores, this is represented by high‐crowned teeth evolved to compensate for wear caused by dietary abrasives like phytoliths and grit. Exactly how dietary abrasives wear teeth is still not understood completely. We fed four different pelleted diets of increasing abrasiveness (L: Lucerne; G: grass; GR: grass and rice husks; GRS: grass, rice husks, and sand) to four groups of a total of 28 adult goats, all with completely erupted third molars, over a six‐month period. Tooth morphology was captured by medical computed tomography scans at the beginning and end of the controlled feeding experiment, …
Dental microwear texture analysis correlations in guinea pigs (Cavia porcellus) and sheep (Ovis aries) suggest that dental microwear texture signal consistency is species-specific
ACKERMANS et al.
One reason for the mammalian clade’s success is the evolutionary diversity of their teeth. In herbivores, this is represented by high‐crowned teeth evolved to compensate for wear caused by dietary abrasives like phytoliths and grit. Exactly how dietary abrasives wear teeth is still not understood completely. We fed four different pelleted diets of increasing abrasiveness (L: Lucerne; G: grass; GR: grass and rice husks; GRS: grass, rice husks, and sand) to four groups of a total of 28 adult goats, all with completely erupted third molars, over a six‐month period. Tooth morphology was captured by medical computed tomography scans at the beginning and end of the controlled feeding experi…
The way wear goes: phytolith-based wear on the dentine–enamel system in guinea pigs (Cavia porcellus)
The effect of phytoliths on tooth wear and function has been contested in studies of animal–plant interactions. For herbivores whose occlusal chewing surface consists of enamel ridges and dentine tissue, the phytoliths might particularly erode the softer dentine, exposing the enamel ridges to different occlusal forces and thus contributing to enamel wear. To test this hypothesis, we fed guinea pigs (Cavia porcellus; n = 36 in six groups) for threeweeks exclusively on dry or fresh forage of low(lucerne), moderate (fresh timothy grass) or very high (bamboo leaves) silica content representing corresponding levels of phytoliths. We quantified the effect of these treatments with measuremen…
Supplemental Material from The way wear goes: phytolith-based wear on the dentine–enamel system in guinea pigs (Cavia porcellus)
Additional table for individual tooth measurements as well as graphs illustrating tooth structure, tooth measurements and buccal tooth height.
Dust and grit matter: abrasives of different size lead to opposing dental microwear textures in experimentally fed sheep (Ovis aries)
ABSTRACT External abrasives ingested along with the herbivore diet are considered main contributors to dental wear, though how the different sizes and concentrations of these abrasives influence wear remains unclear. Dental microwear texture analysis (DMTA) is an established method for dietary reconstruction which describes a tooth9s surface topography on a micrometre scale. The method has yielded conflicting results as to the effect of external abrasives. In the present study, a feeding experiment was performed on sheep (Ovis aries) fed seven diets of different abrasiveness. Our aim was to discern the individual effects of size (4, 50 and 130 µm) and concentration (0%, 4% and 8% of dry mat…
Dental wear at macro- and microscopic scale in rabbits fed diets of different abrasiveness: A pilot investigation
To differentiate the effects of internal and external abrasives on tooth wear, we performed a controlled feeding experiment in rabbits fed diets of varying phytolith content as an internal abrasive and with addition of sand as an external abrasive. 13 rabbits were each fed one of the following four pelleted diets with different abrasive characteristics (no phytoliths: lucerne L; phytoliths: grass G; more phytoliths: grass and rice hulls GR; phytoliths plus external abrasives: grass, rice hulls and sand GRS) for two weeks. At the end the feeding period, three tooth wear proxies were applied to quantify wear on the cheek teeth at macroscopic and microscopic wear scales: CT scans were obtained…
Shape, size, and quantity of ingested external abrasives influence dental microwear texture formation in guinea pigs
Food processing wears down teeth, thus affecting tooth functionality and evolutionary success. Other than intrinsic silica phytoliths, extrinsic mineral dust/grit adhering to plants causes tooth wear in mammalian herbivores. Dental microwear texture analysis (DMTA) is widely applied to infer diet from microscopic dental wear traces. The relationship between external abrasives and dental microwear texture (DMT) formation remains elusive. Feeding experiments with sheep have shown negligible effects of dust-laden grass and browse, suggesting that intrinsic properties of plants are more important. Here, we explore the effect of clay- to sand-sized mineral abrasives (quartz, volcanic ash, loess,…
Everything matters: Molar microwear texture in goats (Capra aegagrus hircus) fed diets of different abrasiveness
There is an ongoing discourse about whether or not external abrasives influence the microscopic wear in herbivore teeth, including a statement that “dust does not matter”. We submitted the maxillary and mandibular second molar of 28 goats (Capra aegagrus hircus) to dental microwear texture analysis (DMTA). The study animals were divided into four groups, which received diets of increasing phytolith-based abrasiveness (L: lucerne based pellets, very low phytolith abrasion diet, acting as control; G: grass-based pellets, medium abrasive phytolith diet; GR: grass and rice husk pellets, high abrasion phytolith diet), or a diet with added external abrasives (GRS: the GR diet with add…
Controlled feeding experiments with diets of different abrasiveness reveal slow development of mesowear signal in goats ( Capra aegagrus hircus )
ABSTRACT Dental mesowear is applied as a proxy to determine the general diet of mammalian herbivores based on tooth-cusp shape and occlusal relief. Low, blunt cusps are considered typical of grazers and high, sharp cusps typical of browsers. However, how internal or external abrasives impact mesowear, and the time frame the wear signature takes to develop, still need to be explored. Four different pelleted diets of increasing abrasiveness (lucerne, grass, grass and rice husks, and grass, rice husks and sand) were fed to four groups of a total of 28 adult goats in a controlled feeding experiment over a 6-month period. Tooth morphology was captured by medical CT scans at the beginning and end…
Data from: Controlled feeding experiments with diets of different abrasiveness reveal slow development of mesowear signal in goats (Capra aegagrus hircus)
Dental mesowear is applied as a proxy to determine the general diet of mammalian herbivores based on tooth-cusp shape and occlusal relief. Low, blunt cusps are considered typical for grazers and high, sharp cusps typical for browsers. However, how internal or external abrasives impact mesowear, and the time frame the wear signature takes to develop, still need to be explored. Four different pelleted diets of increasing abrasiveness (lucerne, grass, grass and rice husks, grass, rice husks and sand) were fed to four groups of a total of 28 adult goats in a controlled feeding experiment over a six-month period. Tooth morphology was captured by medical CT scans at the beginning and end of the e…