0000000001312500

AUTHOR

Christian Freese

showing 15 related works from this author

Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells.

2012

A library-orientated approach is used to gain understanding of the interactions of well-defined nanoparticles with primary human endothelial cells, which are a key component of the vasculature. Fifteen sequentially modified gold nanoparticles (AuNPs) based on three different core sizes (18, 35, 65 nm) and five polymeric coatings were prepared. The synthetic methodology ensured homogeneity across each series of particles to allow sequential investigation of the chemical features on cellular interactions. The toxicity of these nanoparticles, their uptake behavior in primary human dermal microvascular endothelial cells (HDMECs), and quantification of uptake were all investigated. The results o…

Polymers and PlasticsCell SurvivalPolymersSurface PropertiesNanoparticleMetal NanoparticlesBioengineeringNanotechnologyengineering.materialBiomaterialsCoatingMaterials ChemistryHumansParticle SizeCytotoxicityCells CulturedSkinchemistry.chemical_classificationGlucosamineChemistryEndothelial CellsPolymerEthylenediaminesIn vitroColloidal goldMicrovesselsengineeringBiophysicsGoldBiomacromolecules
researchProduct

Gold nanoparticle interactions with endothelial cells cultured under physiological conditions

2017

PEGylated gold nanoparticles (AuNPs) have an extended circulation time after intravenous injection in vivo and exhibit favorable properties for biosensing, diagnostic imaging, and cancer treatment. No impact of PEGylated AuNPs on the barrier forming properties of endothelial cells (ECs) has been reported, but recent studies demonstrated that unexpected effects on erythrocytes are observed. Almost all studies to date have been with static-cultured ECs. Herein, ECs maintained under physiological cyclic stretch and flow conditions and used to generate a blood-brain barrier model were exposed to 20 nm PEGylated AuNPs. An evaluation of toxic effects, cell stress, the release profile of pro-infla…

SwineBiomedical EngineeringNanoparticleNanotechnology02 engineering and technology010402 general chemistryBlood–brain barrier01 natural sciencesPolyethylene GlycolsIn vivoHuman Umbilical Vein Endothelial CellsMedicineAnimalsHumansGeneral Materials ScienceParticle SizeCells Culturedbusiness.industryEndothelial Cells021001 nanoscience & nanotechnologyQPR10104 chemical sciencesCancer treatmentCell stressmedicine.anatomical_structureColloidal goldBlood-Brain BarrierBiophysicsNanoparticlesCirculation timeGold0210 nano-technologybusinessBlood stream
researchProduct

Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

2016

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood-brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modif…

0301 basic medicineXBP1BiPCell SurvivalPolymersBiomedical EngineeringMetal NanoparticlesApoptosis02 engineering and technologyBiologyEndoplasmic ReticulumToxicologyArticleCell LineProinflammatory cytokine03 medical and health sciencescell stressDownregulation and upregulationRisk FactorsHeat shock proteinAnimalsHumansHSP70 Heat-Shock ProteinsParticle SizeHeat-Shock ProteinsATF6Endoplasmic reticulumInterleukin-8ATF4Endothelial CellsMembrane Proteinsunfolded protein responseEndoplasmic Reticulum Stress021001 nanoscience & nanotechnologyQPActivating Transcription Factor 4Cell biology030104 developmental biologyBlood-Brain Barriertight junction proteinsImmunologyUnfolded protein responseGold0210 nano-technologyTranscription Factor CHOPNanotoxicology
researchProduct

Extract of Caragana sinica as a potential therapeutic option for increasing alpha-secretase gene expression

2015

Abstract Background Alzheimer's disease represents one of the main neurological disorders in the aging population. Treatment options so far are only of symptomatic nature and efforts in developing disease modifying drugs by targeting amyloid beta peptide-generating enzymes remain fruitless in the majority of human studies. During the last years, an alternative approach emerged to target the physiological alpha-secretase ADAM10, which is not only able to prevent formation of toxic amyloid beta peptides but also provides a neuroprotective fragment of the amyloid precursor protein – sAPPalpha. Purpose To identify novel alpha-secretase enhancers from a library of 313 extracts of medicinal plant…

MaleAmyloid betaADAM10Pharmaceutical ScienceBiologyPharmacologyBlood–brain barrierGene Expression Regulation EnzymologicADAM10 ProteinAmyloid beta-Protein PrecursorMicealpha-Viniferinchemistry.chemical_compoundCell Line TumorDrug DiscoverymedicineAmyloid precursor proteinAnimalsAspartic Acid EndopeptidasesHumansPromoter Regions GeneticBenzofuransMice KnockoutPharmacologyReporter genePlants MedicinalPlant ExtractsCaragana sinicaMembrane Proteinsbiology.organism_classificationCaraganaADAM Proteinsmedicine.anatomical_structureComplementary and alternative medicinechemistryAlpha secretaseBlood-Brain Barrierbiology.proteinMolecular MedicineAmyloid Precursor Protein SecretasesPhytomedicine
researchProduct

Design and physicochemical characterization of poly(amidoamine) nanoparticles and the toxicological evaluation in human endothelial cells: applicatio…

2013

In this study, we investigated nanoparticles formulated by self-assembly of a biodegradable poly(amidoamine) (PAA) and a fluorescently labeled peptide, in their capacity to internalize in endothelial cells and deliver the peptide, with possible applications for brain drug delivery. The nanoparticles were characterized in terms of size, surface charge, and loading efficiency, and were applied on human cerebral microvascular endothelial cells (hCMEC/D3) and human umbilical vein endothelial cells (Huvec) cells. Cell-internalization and cytotoxicity experiments showed that the PAA-based nanocomplexes were essentially nontoxic, and the peptide was successfully internalized into cells. The result…

Materials scienceAmidoamineeducationBiomedical EngineeringBiophysicsNanoparticleBioengineeringPeptideUmbilical veinBiomaterialschemistry.chemical_compoundMETIS-302365Human Umbilical Vein Endothelial CellsPolyaminesIR-90176HumansCytotoxicityCells Culturedchemistry.chemical_classificationDrug CarriersIntracellular proteinBrainEndothelial CellsPoly(amidoamine)chemistryBiochemistryDrug deliveryMicrovesselsBiophysicsNanoparticlesOligopeptidesJournal of biomaterials science : polymer edition
researchProduct

Uptake and cytotoxicity of citrate-coated gold nanospheres : comparative studies on human endothelial and epithelial cells

2012

Abstract Background The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (1…

MaleHealth Toxicology and Mutagenesis610 MedizinMetal Nanoparticles02 engineering and technologyToxicology01 natural scienceschemistry.chemical_compoundCoated Materials Biocompatible610 Medical sciencesQDCitratesCytotoxicityGeneral Medicine021001 nanoscience & nanotechnologyEndothelial stem cellmedicine.anatomical_structureColloidal goldBlood-Brain Barrier0210 nano-technologyNanospheresMaterials scienceEndotheliumCell SurvivalForeskinlcsh:Industrial hygiene. Industrial welfare010402 general chemistrySodium CitrateCell LineMicroscopy Electron Transmissionlcsh:RA1190-1270Sodium citratemedicineHumansViability assayParticle Sizelcsh:Toxicology. PoisonsCell ProliferationResearchCytoplasmic VesiclesEpithelial CellsQPIn vitro0104 chemical scienceschemistryCell culture[SDV.SPEE] Life Sciences [q-bio]/Santé publique et épidémiologieImmunologyBiophysics[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologieEndothelium VascularGoldlcsh:HD7260-7780.8
researchProduct

Human endothelial cell-based assay for endotoxin as sensitive as the conventional Limulus Amebocyte Lysate assay

2014

AbstractEndotoxin, also known as lipopolysaccharide (LPS) produced by bacteria can be present in any liquid or on any biomaterial even if the material is sterile. Endotoxin in mammals can cause fever, inflammation, cell and tissue damage and irreversible septic shock and death. In the body, endothelial cells making up the blood vasculature and endothelial cells in vitro rapidly react to minute amounts of endotoxin resulting in a rapid induction of the cell adhesion molecule E-selectin. In this study we have used immunofluorescent staining to evaluate the expression of E-selectin on human microvascular endothelial cells from the skin (HDMEC) and human umbilical vein endothelial cells (HUVEC)…

LipopolysaccharideCellBiophysicsLipopolysaccharideBioengineeringBiologyUmbilical veinEndothelialMicrobiologyBiomaterialschemistry.chemical_compoundEndotoxinLimit of DetectionHorseshoe CrabsmedicineAnimalsHumansCell adhesionCells CulturedCell adhesion moleculeIn vitroEndotoxinsEndothelial stem cellmedicine.anatomical_structurechemistryMechanics of MaterialsLimulus amebocyte lysateCeramics and CompositesLimulus amebocyte assayEndothelium VascularBiomaterials
researchProduct

Bioresponsive poly(amidoamine)s designed for intracellular protein delivery.

2013

Poly(amidoamine)s with bioreducible disulfide linkages in the main chain (SS-PAAs) and pH-responsive, negatively charged citraconate groups in the sidechain have been designed for effective intracellular delivery and release of proteins with a net positive charge at neutral pH. Using lysozyme as a cationic model protein these water soluble polymers efficiently self-assemble into nanocomplexes by charge attraction. At pH 5 (the endosomal pH) the amide linkages connecting the citraconate groups in the sidechains of the SS-PAAs are hydrolyzed by intramolecular catalysis, resulting in expulsion of the negative citraconate groups and formation of protonated amine groups, resulting in charge reve…

StereochemistryBiomedical EngineeringBiochemistryBiomaterialsMETIS-302366chemistry.chemical_compoundNanocapsulesAmideIR-90177Materials TestingPolyaminesHumansMolecular BiologyCells CulturedCationic polymerizationEndothelial CellsProteinsGeneral MedicinePoly(amidoamine)CytosolMembranechemistryBiophysicsAmine gas treatingLysozymeIntracellularBiotechnologyActa biomaterialia
researchProduct

The effects of α-secretase ADAM10 on the proteolysis of neuregulin-1

2009

Although ADAM10 is a major alpha-secretase involved in non-amyloidogenic processing of the amyloid precursor protein, several additional substrates have been identified, most of them in vitro. Thus, therapeutical approaches for the prevention of Alzheimer's disease by upregulation of this metalloproteinase may have severe side effects. In the present study, we examined whether the ErbB receptor ligand neuregulin-1, which is essential for myelination and other important neuronal functions, is cleaved by ADAM10. Studies with beta- and gamma-secretase inhibitors, as well as with the metalloproteinase inhibitor GM6001, revealed an inhibition of neuregulin-1 processing in human astroglioma cell …

biologyADAM10Cell BiologySheddaseBiochemistryDownregulation and upregulationErbBIn vivoAmyloid precursor proteinbiology.proteinCancer researchAstrogliomaNeuregulin 1Molecular BiologyFEBS Journal
researchProduct

Uptake of polymeric nanoparticles in a human induced pluripotent stem cell-based blood-brain barrier model: Impact of size, material, and protein cor…

2021

The blood–brain barrier (BBB) maintains the homeostasis of the central nervous system, which is one of the reasons for the treatments of brain disorders being challenging in nature. Nanoparticles (NPs) have been seen as potential drug delivery systems to the brain overcoming the tight barrier of endothelial cells. Using a BBB model system based on human induced pluripotent stem cells (iPSCs), the impact of polymeric nanoparticles has been studied in relation to nanoparticle size, material, and protein corona. PLGA [poly(lactic-co-glycolic acid)] and PLLA [poly(d,l-lactide)] nanoparticles stabilized with Tween® 80 were synthesized (50 and 100 nm). iPSCs were differentiated into human brain m…

PolymersInduced Pluripotent Stem CellsStatic ElectricityGeneral Physics and AstronomyNanoparticleProtein Corona02 engineering and technology010402 general chemistryBlood–brain barrier01 natural sciencesModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyBiomaterialschemistry.chemical_compoundPolylactic Acid-Polyglycolic Acid CopolymermedicineElectric ImpedanceHumansGeneral Materials ScienceParticle SizeInduced pluripotent stem cellEndothelial CellsCell DifferentiationGeneral ChemistryHuman brain021001 nanoscience & nanotechnologyDynamic Light ScatteringFractionation Field Flow0104 chemical sciencesPLGAmedicine.anatomical_structurechemistryBlood-Brain BarrierSelective adsorptionDrug deliveryCalibrationBiophysicsNanoparticlesPolystyrenesProtein Corona0210 nano-technologyBiointerphases
researchProduct

Cell Culture Systems for Studying Biomaterial Interactions with Biological Barriers

2011

The human body has numerous physical barriers that prevent most harmful or foreign compounds from entering the body. These barriers are formed by unique cell types, which through their location-specific biological cell characteristics prevent compounds from passing between or through them or selectively allow only specific compounds to move across the barrier that they form. Multiple cell types are involved that together form the functioning barrier in a particular organ or tissue. In many cases, in vitro human multicellular culture systems have been developed. These in vitro cell culture models have been extremely valuable in determining the toxic effects of novel compounds on cellular fun…

Multicellular organismCell typemedicine.anatomical_structureCell cultureCellmedicineBiomaterialNanotechnologyGene deliveryBiologyBlood–brain barrierIn vitroCell biology
researchProduct

Identification of neuronal and angiogenic growth factors in an in vitro blood-brain barrier model system: Relevance in barrier integrity and tight ju…

2016

We previously demonstrated that the co-cultivation of endothelial cells with neural cells resulted in an improved integrity of the in vitro blood-brain barrier (BBB), and that this model could be useful to evaluate the transport properties of potential central nervous system disease drugs through the microvascular brain endothelial. In this study we have used real-time PCR, fluorescent microscopy, protein arrays and enzyme-linked immunosorbent assays to determine which neural- and endothelial cell-derived factors are produced in the co-culture and improve the integrity of the BBB. In addition, a further improvement of the BBB integrity was achieved by adjusting serum concentrations and grow…

0301 basic medicineSus scrofaCell Culture TechniquesCell CommunicationBiologyMatrix metalloproteinaseBlood–brain barrierBiochemistryTight JunctionsCapillary Permeability03 medical and health sciences0302 clinical medicinePEDFIn vivoNeurotrophic factorsCell Line TumormedicineElectric ImpedanceAnimalsHumansNerve Growth FactorsAngiogenic ProteinsNeuronsTight Junction ProteinsTight junctionEndothelial CellsCell BiologyCoculture TechniquesCell biologyVascular endothelial growth factor B030104 developmental biologymedicine.anatomical_structurePhenotypeBlood-Brain BarrierImmunologyNeurovascular CouplingEndostatinCardiology and Cardiovascular Medicine030217 neurology & neurosurgerySignal TransductionMicrovascular research
researchProduct

Uptake of poly(2-hydroxypropylmethacrylamide)-coated gold nanoparticles in microvascular endothelial cells and transport across the blood-brain barri…

2020

The facile and modular functionalization of gold nanoparticles makes them versatile tools in nanomedicine, for instance, photothermal therapy, contrast agents or as model nanoparticles to probe drug-delivery mechanisms. Since endothelial cells from various locations in the body exhibit unique phenotypes we quantitatively examined the amount of different sized poly(2-hydroxypropylmethacrylamide)-coated gold nanoparticles internalized into primary human dermal endothelial cells or human brain endothelial cells (hCMEC/D3) by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and visualized the nanoparticles using light and electron microscopy. Poly(2-hydroxypropylmethacrylamide)…

TPChemistryBiomedical EngineeringDrug delivery to the brainNanoparticleProtein CoronaNanotechnologyPhotothermal therapyBlood–brain barrierQPR1medicine.anatomical_structureColloidal goldDrug deliverymedicineBiophysicsNanomedicineGeneral Materials ScienceBiomaterials science
researchProduct

An in vitro and in vivo study of peptide-functionalized nanoparticles for brain targeting: The importance of selective blood-brain barrier uptake

2017

Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized wi…

Male0301 basic medicinePharmaceutical ScienceMedicine (miscellaneous)LIPOSOMES02 engineering and technologyPharmacologyDrug Delivery SystemsTissue DistributionGeneral Materials ScienceDENDRIMERSDRUG-DELIVERYCytotoxicityDrug CarriersLiposomeBrain021001 nanoscience & nanotechnologyMETHOTREXATEmedicine.anatomical_structureBlood-Brain BarrierDrug deliveryMolecular MedicineNanomedicine0210 nano-technologyMaterials scienceBiomedical EngineeringBioengineeringBlood–brain barrierMEDIATED TRANSPORTCell Line03 medical and health sciencesIn vivomedicineAnimalsHumansAmino Acid SequenceRats WistarDENDRITIC POLYMERSTargetingSENSITIVE HYDROGELSBiological TransportIn vitron/a OA procedure030104 developmental biologyNANOGELSNanoparticles for drug delivery to the brain80-COATED POLYBUTYLCYANOACRYLATE NANOPARTICLESCELLSNanoparticlesPeptides
researchProduct

Impact of polymer-modified gold nanoparticles on brain endothelial cells: exclusion of endoplasmic reticulum stress as a potential risk factor

2016

A library of polymer-coated gold nanoparticles (AuNPs) differing in size and surface modifications was examined for uptake and induction of cellular stress responses in the endoplasmic reticulum (ER stress) in human brain endothelial cells (hCMEC/D3). ER stress is known to affect the physiology of endothelial cells (ECs) and may lead to inflammation or apoptosis. Thus, even if applied at non-cytotoxic concentrations ER stress caused by nanoparticles should be prevented to reduce the risk of vascular diseases and negative effects on the integrity of barriers (e.g. blood–brain barrier). We exposed hCMEC/D3 to twelve different AuNPs (three sizes: 18, 35, and 65 nm, each with four surface-modif…

researchProduct