0000000001313105

AUTHOR

João Figueira

Poly(alkylidenamines) dendrimers as scaffolds for the preparation of low-generation ruthenium based metallodendrimers

The aim of this article is to highlight the use of nitrile-functionalized poly(alkylidenamines) dendrimers as building blocks for the preparation of low-generation ruthenium based cationic metallodendrimers having in view potential biomedical applications. Air-stable poly(alkylidenamines) nitrile dendrimers, peripherally functionalized with the ruthenium moieties [Ru(η5-C5H5)(PPh3)2]+ or [RuCl(dppe)2]+, have been prepared, characterized and are being studied for their anticancer activity. The followed strategy is based on the biological advantages associated with low-generation dendrimers, the known activity of ruthenium compounds as anticancer drugs and the stability of these dendrimers at…

research product

Three 2,5-dialkoxy-1,4-diethynylbenzene derivatives

2,5-Dieth­oxy-1,4-bis­[(trimethyl­silyl)ethyn­yl]benzene, C20H30O2Si2, (I), constitutes one of the first structurally characterized examples of a family of compounds, viz. the 2,5-dialk­oxy-1,4-bis­[(trimethyl­silyl)ethyn­yl]benzene derivatives, used in the preparation of oligo(phenyl­ene­ethynylene)s via Pd/Cu-catalysed cross-coupling. 2,5-Dieth­oxy-1,4-diethynylbenzene, C14H14O2, (II), results from protodesilylation of (I). 1,4-Diethynyl-2,5-bis­(hept­yloxy)benzene, C24H34O2, (III), is a long alk­yloxy chain analogue of (II). The molecules of compounds (I)–(III) are located on sites with crystallographic inversion symmetry. The large substituents either in the alkynyl group or in the benz…

research product

ChemInform Abstract: Poly(alkylidenamines) Dendrimers as Scaffolds for the Preparation of Low-Generation Ruthenium Based Metallodendrimers

The aim of this article is to highlight the use of nitrile-functionalized poly(alkylidenamines) dendrimers as building blocks for the preparation of low-generation ruthenium based cationic metallodendrimers having in view potential biomedical applications. Air-stable poly(alkylidenamines) nitrile dendrimers, peripherally functionalized with the ruthenium moieties [Ru(η5-C5H5)(PPh3)2]+ or [RuCl(dppe)2]+, have been prepared, characterized and are being studied for their anticancer activity. The followed strategy is based on the biological advantages associated with low-generation dendrimers, the known activity of ruthenium compounds as anticancer drugs and the stability of these dendrimers at…

research product

cis,cis,cis-(Acetato-k2O,O´)bis[1,2-bis- (diphenylphosphanyl)ethane-k2P,P´]- ruthenium(II) 0.75-trifluoromethanesulfonate 0.25-chloride

In the title RuII carboxylate compound, [Ru(C₂H₃O₂)(C₂₆H₂₄P₂)₂](CF₃O₃S)₀.₇₅Cl₀.₂₅, the distorted tris-bidentate octahedral stereochemistry about the RuII atom in the complex cation comprises four P-atom donors from two 1,2-bis(diphenylphosphanyl)ethane ligands [Ru-P = 2.2881 (13)-2.3791 (13) Å] and two O-atom donors from the acetate ligand [Ru-O = 2.191 (3) and 2.202 (3) Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoromethanesulfonate anions and one chloride anion, with two such formula units in the unit cell. peerReviewed

research product

cis-Aquabis[bis(diphenylphosphino)ethane-κ2 P,P′]chlororuthenium(II) hexafluorophosphate dichloromethane sesquisolvate hemihydrate

In the title compound, [RuCl(C26H24P)2(H2O)]PF6·1.5CH2Cl2·0.5H2O, the complex RuII cation is in a slightly distorted octahedral environment, chelated by two bis(diphenylphosphino)ethane ligands, with a water molecule and a chloride anion in a mutually cis geometry completing the coordination.

research product

cis-[Bis(diphenylphosphino)ethane-κ2P,P′]dichlororuthenium(II) dichloromethane disolvate

The title compound, cis-[RuCl2(C26H24P2)2]·2CH2Cl2, was obtained as an unexpected product from our attempts to prepare new ruthenium molecular wires using organic bridging ligands. Three solvates and a solvent-free structure of the isomeric complex with the chloride anions in a trans geometry have already been reported, while the cis isomer has been described only in solution studies prior to this work.

research product

trans-Bis[bis(diphenylphosphino)methane-κ2P,P′]dichlororuthenium(II) dichloromethane disolvate acetone hemisolvate hemihydrate

Submitted by António Freitas (amsf@uma.pt) on 2019-06-14T10:31:02Z No. of bitstreams: 1 trans-Bis[bis(diphenylphosphino)methane-j2P,P000]dichlororuthenium(II) dichloromethane disolvate acetone hemisolvate hemihydrate.pdf: 221219 bytes, checksum: 8e4738b39248ecff6cd2421345c563e7 (MD5) Made available in DSpace on 2019-06-14T10:31:02Z (GMT). No. of bitstreams: 1 trans-Bis[bis(diphenylphosphino)methane-j2P,P000]dichlororuthenium(II) dichloromethane disolvate acetone hemisolvate hemihydrate.pdf: 221219 bytes, checksum: 8e4738b39248ecff6cd2421345c563e7 (MD5) Previous issue date: 2006 info:eu-repo/semantics/publishedVersion

research product

4,4'-[Thiophene-2,5-diylbis(ethyne-2,1-diyl)]dibenzonitrile

In the solid state, the title compound, C(22)H(10)N(2)S, forms centrosymmetric dimers by pairs of non-classical C-H⋯S hydrogen bonds linking approximately coplanar mol-ecules. The benzene ring involved in this inter-action makes a dihedral angle of only 7.21 (16)° with the thio-phene ring, while the other benzene ring is twisted somewhat out of the plane, with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an inter-planar spacing of 3.44 Å. C-H⋯N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each mol-ecule thus inter-acts with 12 adjacent mol-ecules, five of them approaching closer than the sum of the van …

research product

Synthesis, characterization and solid-state photoluminescence studies of six alkoxy phenylene ethynylene dinuclear palladium(II) rods

A rare family of six discrete binuclear [PdCl(PEt3)2] phenylene ethynylene rods with alkoxy side chains (methoxy, ethoxy and heptoxy) have been developed, and their solid-state photoluminescence results have been presented and discussed. The shorter bridging ligands are of the general formula H–CuC– C6H2(R)2–CuC–H, where R = H, OCH3, OC 2H5, and OC7H15, whereas the longer ones are based on H– CuC–C6H4–CuC–C6H2(R)2–CuC–C6H4–CuC–H, where R = OCH3, OC 2H5. These ligands display increasing length in both the main dimension (backbone length) as well as the number of carbons in the side chains (R, alkoxide side chain) that stem from the central phenylene moiety. The X-ray crystal structures of tw…

research product

Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells

Here and for the first time, we show that the organometallic compound [Ru(&eta

research product

A Trinuclear Aqua Cyano‐Bridged Ruthenium Complex [{(η 5 ‐C 5 H 5 )(PPh 3 ) 2 Ru(μ‐CN)} 2 RuCl 2 (PPh 3 )(H 2 O)]PF 6 : Synthesis, Characterization and Crystal Structure

The organometallic trinuclear aqua cyano-bridged complex [{(η5-C5H5)(PPh3)2Ru(μ-CN)}2RuCl2(PPh3)(H2O)]PF6 (1), in which the fragment [RuCl2(PPh3)(H2O)] acts as a bridge and an acceptor group between the two terminal cyclopentadienyl ruthenium cyano moieties, was isolated in moderate yield from the reaction of [(η5-C5H5)(PPh3)2RuCN] with [RuCl2(PPh3)3] in THF. To the best of our knowledge, compound 1 is one of the few examples of a trinuclear array of ruthenium fragments bridged by the nitrogen atom of the–C≡N– group (Ru–C≡N–Ru′–N≡C–Ru) with a Ru-coordinated water molecule. The new aqua complex was structurally characterized by FTIR, 1H, 13C, and 31P NMR spectroscopy, mass spectrometry, elem…

research product

cis,cis,cis-(Acetato-k2O,O´)bis[1,2-bis- (diphenylphosphanyl)ethane-k2P,P´]- ruthenium(II) 0.75-trifluoromethanesulfonate 0.25-chloride

In the title Ru(II) carboxyl-ate compound, [Ru(C2H3O2)(C26H24P2)2](CF3O3S)0.75Cl0.25, the distorted tris-bidentate octa-hedral stereochemistry about the Ru(II) atom in the complex cation comprises four P-atom donors from two 1,2-bis-(diphenyl-phosphan-yl)ethane ligands [Ru-P = 2.2881 (13)-2.3791 (13) Å] and two O-atom donors from the acetate ligand [Ru-O = 2.191 (3) and 2.202 (3) Å]. The disordered counter-anions are located on the same site in the structure in a 3:1 ratio, the expanded formula comprising four complex cations, three trifluoro-methane-sulfonate anions and one chloride anion, with two such formula units in the unit cell.

research product

A convenient route for the preparation of the monohydride catalyst trans-[RuCl(H)(dppe)2] (dppe=Ph2PCH2CH2PPh2): improved synthesis and crystal structure

Abstract A novel and improved room temperature synthesis of the monohydride catalyst trans-[RuCl(H)(dppe)2] complex (1, dppe (1,2-bis(diphenylphosphino)ethane) = Ph2PCH2CH2PPh2) proceeds through oxidation of methanol (the solvent) by the pentacoordinated cis-[RuCl(dppe)2][PF6] complex and t-BuOK as the base is described. Compound 1 was fully characterized by NMR (1H, 13C, 31P), ESI-MS(TOF +), FTIR and elemental analysis. The X-ray structure of 1 was reported for the first time and unambiguously confirms the trans-configuration of the complex.

research product

CCDC 900513: Experimental Crystal Structure Determination

Related Article: João Figueira, Manuel G. Jardim, João Rodrigues, Arto Valkonen, Kari Rissanen|2013|Inorg.Chem.Commun.|29|123|doi:10.1016/j.inoche.2013.01.002

research product

CCDC 882325: Experimental Crystal Structure Determination

Related Article: João Figueira, Wojciech Czardybon, José Carlos Mesquita, João Rodrigues, Fernando Lahoz, Luca Russo, Arto Valkonen, Kari Rissanen|2015|Dalton Trans.|44|4003|doi:10.1039/C4DT00493K

research product

CCDC 882324: Experimental Crystal Structure Determination

Related Article: João Figueira, Wojciech Czardybon, José Carlos Mesquita, João Rodrigues, Fernando Lahoz, Luca Russo, Arto Valkonen, Kari Rissanen|2015|Dalton Trans.|44|4003|doi:10.1039/C4DT00493K

research product

4,4'-[Thiophene-2,5-diylbis(ethyne-2,1-diyl)]dibenzonitrile

In the solid state, the title compound, C₂₂H₁₀N₂S, forms centrosymmetric dimers by pairs of non-classical C-H...S hydrogen bonds linking approximately coplanar molecules. The benzene ring involved in this interaction makes a dihedral angle of only 7.21 (16)° with the thiophene ring, while the other benzene ring is twisted somewhat out of the plane, with a dihedral angle of 39.58 (9)°. The hydrogen-bonded dimers stack on top of each other with an interplanar spacing of 3.44 Å. C-H...N hydrogen bonds link together stacks that run in approximately perpendicular directions. Each molecule thus interacts with 12 adjacent molecules, five of them approaching closer than the sum of the van der Waals…

research product